Technical information on the advantages and main technologies of anaerobic digestion treatment for wastewaters in developing countries.
GATE (2001): Anaerobic Methods of Municipal Wastewater Treatment. Technical Information W3e. Frankfurt (Germany): GATE Information Service and Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH URL [Accessed: 03.06.2019]Library
This article gives an overview of the Anammox process and how it was discovered.
SHIVARAMAN, N. ; SHIVARAMAN, G. (2003): Anammox – A Novel Microbial Process for Ammonium Removal. In: Current Science: Volume 84 , 1507-1508. URL [Accessed: 03.06.2019]The purpose of this manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). This manual contains extensive information on the principles of biological nutrient removal and chemical phosphorus removal to serve as the basis for design. A detailed description of technologies, both conventional and emerging, serves as a resource for preliminary technology selection.
U.S. EPA (2010): Nutrient Control Design Manual. Washington, DC: United States Environmental Protection Agency URL [Accessed: 03.06.2019]The Anammox reaction was discovered and validated to be mediated by microbes in the early nineties. In 1999, the responsible bacteria were positively identified. These slowly growing microorganisms belong to the order Brocadiales and are affiliated to the Planctomycetes. Cultivation of these bacteria at sufficient biomass density and rate, as well as the lack of pure cultures, has challenged the study of these extraordinary organisms. Membrane reactors have made the cultivation of up to 95% enriched cell suspensions of Anammox bacteria possible.
KUENEN, J.G. KARTAL, B. JETTEN, M.S.M. (n.y): The Discovery of the Anammox Process and Beyond. Pasadena: The Agouron Institute URL [Accessed: 03.06.2019]Short Factsheet on the applicability and design criteria of trickling filters including a lot of information on operation and maintenance (form the United States Environment Protection Agency (EPA).
U.S. EPA (2000): Trickling Filters. (= Wastewater Technology Fact Sheet, EPA 832-F , 14 ). United States Environment Protection Agency URL [Accessed: 03.06.2019]This brochure gives you an overview about several wastewater treatment solutions.
AQWISE (2010): Integrated Water & Wastewater Treatment Solutions. Herzliya: Aqwise - Wise Water Technologies Ltd URL [Accessed: 03.06.2019]This technical factsheet describes the treatment of wastes through anaerobic digestion and biogas production at large-scale in a very comprehensive way. The treatment of different wastes, including sewage sludge, agricultural and industrial wastes or solid municipal wastes, is emphasised.
GATE (2000): Anaerobic Methods of Waste Treatment. Technical Information W2e. Frankfurt (Germany): German Agency for Technical Cooperation GmbH (GTZ) and German Appropriate Technology Exchange (GATE) URL [Accessed: 03.06.2019]Exhaustive report on technological, operational and economic aspects of decentralised waste water treatment systems. Spreadsheet examples support the reader in designing and planning waste water treatment systems components.
SASSE, L. BORDA (1998): DEWATS. Decentralised Wastewater Treatment in Developing Countries. Bremen: Bremen Overseas Research and Development Association (BORDA) URL [Accessed: 03.06.2019]Case study about a combined pond / constructed wetland system in cold climate for 160 peoples, a dairy and food processing workshop, a bakery and a laundry. A vertical flow constructed wetlands was installed for pre-treatment, followed by a deep enhanced facultative pond, three aerated stabilization ponds, a planted sand filter and finally tow horizontal-flow constructed wetlands.
BROWNE, P.D. ; JENSSEN, P.D. (2005): Exceeding Tertiary Standards with a Pond/Reed Bed System in Norway. In: Journal of Water Science and Technology: Volume 51 , 299-306. URL [Accessed: 03.06.2019]Scientific article on advanced integrated wastewater pond systems.
GREEN, F.B. ; BERNSTONE, L.S. ; LUNDQUIST, T.J. ; OSWALD, W.J. (1996): Advanced Integrated Wastewater Pond Systems for Nitrogen Removal. In: Water Science and Technology : Volume 33 , 207-217. URL [Accessed: 03.06.2019]This project aimed to reduce drinking water consumption and wastewater amount to be discharged to sewer through recycling greywater for internal re-use in a four star hotel in Germany. A new greywater biological treatment technology was trailed and demonstrated for the first time: Greywater from baths/showers in the guest rooms is separately collected and transferred to settling tanks. After preliminary sedimentation the greywater is treated continuously in a six-stage Rotating Biological Contactor (RBC) system.
GTZ (2006): Greywater recycling in Hotel Arabella Sheraton Am Buesing Palais Offenbach, Germany. (= data sheets for ecosan projects , 18 ). Eschborn: German Agency for Technical Cooperation (GTZ) URL [Accessed: 03.06.2019]This master thesis was a part of a research program at Colorado School of Mines. The objectives are threefold. Initially, the purposes were to increase the state of the knowledge using MBR in wastewater treatment and evaluate a pilot-scale MNR during start-up and steady state conditions, in respect of nutrient and organic compounds removal and overall system performance. A second objective was to evaluate the performance of the MBR during different stress conditions (power failure, high loading rate and high flux) in respect of nutrient and organic compounds removal and overall system performance. A third objective was to investigate permeate quality with respect of nutrients and organic compounds after infiltration through soil columns. The purpose was to assess if the effluent quality was suitable for direct discharge into the underlying groundwater or surface water.
LARSSON, E. PERSSON, J. (2004): Viability of Membrane Bioreactor Technology as an Advanced Pre-Treatment for Onsite Wastewater Treatment. (= Master Thesis ). Lulea: University of Technology URL [Accessed: 03.06.2019]The information service on biogas technology has been developed and produced on the behalf of the GTZ project Information and Advisory Service on Appropriate Technology (ISAT). Volume I tells you all you need to get an overview on biogas sanitation systems, from history over process and operation parameters to social, political and cultural issues.
ISAT ; GTZ (1999): Biogas Basics. (= Biogas Digest , 1 ). Information and Advisory Services on Appropriate Technology (ISAT) and German Agency for Technical Cooperation GmbH (GTZ) URL [Accessed: 03.06.2019]Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus. A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged aerated biofilters. For all the systems, the book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines.
SPERLING, M. von (2007): Activated Sludge and Aerobic Biofilm Reactors. (= Biological Wastewater Treatment Series , 5 ). London: International Water Association (IWA) Publishing URL [Accessed: 03.06.2019]This paper discusses the Membrane Bioreactor (MBR) process and its suitability for Australian water reuse applications. With the current focus on water reuse projects and the role they play in the water cycle, the search for cost competitive advanced wastewater treatment technologies has never before been so important.
CHAPMAN, S. LESLIE, G. LAW, I. (n.y): Membrane Bioreactors (MBR) for Municipal Wastewater Treatment – An Australian Perspective. Sidney: The University of New South Wales (UNSW) URL [Accessed: 03.06.2019]This paper sets out a framework for the delivery of non-sewered sanitation services that last, are accessible to all and are at scale. The framework is based on IRC International Water and Sanitation’s (IRC) experience and lessons learnt from its engagement in non-sewered sanitation service at scale.
VERHAGEN, J. CARRASCO, M. (2013): Full-Chain Sanitation Services That Last. Non-Sewered Sanitation Services. The Hague: International Water and Sanitation Center (IRC) URL [Accessed: 03.06.2019]While Switzerland's wastewater treatment plants are of a high technical standard, the elimination of nutrients remains costly and energy-intensive. Eawag has now further developed a biological process, which simplifies the removal of nitrogen from sludge digester liquid, reducing costs by 50% for this treatment step.
EAWAG (2010): Reducing Wastewater Treatment Costs and Energy Consumption. Duebendorf: Swiss Federal Institute of Aquatic Science and Technology (EAWAG) URL [Accessed: 03.06.2019]