The Millennium Development Goals (MDGs) for water will only be achieved in Africa by increased development of groundwater for rural water supply. However,the role that groundwater plays in achieving the MDGs is underrated and rarely articulated. This briefing note explores the main groundwater issues related to rural water supply in Africa.
BGN (2006): Groundwater and Rural Water Supply in Africa. International Association of Hydrogeologists (IAH) Burdon Groundwater Network (BGN) URL [Visita: 26.05.2019]Library
The sewage treatment process at SABESP (Basic Sanitation Company of Sao Paulo State, Brazil) has until now burnt some of the biogas produced in the anaerobic digester to enhance the process temperature and the other part was burnt in order to limit impact of emission. The transformation of this excess biogas into electricity would be a sustainable solution generating even additional income. An alternative to burn it in flare is the biogas conversion into electricity through engines or microturbines. This paper describes the proposed system to convert biogas in electricity and heat using microturbines (30 kW ISO).
TEIXEIRA COELHO, S. STORTINI GONZALES VELAZQUES, S.M. STELLA MARTINS, O. CASTRO DE ABREU, F. (2006): Biogas from Sewage Treatment used to Electric Energy Generation, by a 30 kW (ISO) Microturbine. (= World Bioenergy Conference & Exhibition ). Sao Paulo: Brazilian Reference Center on Biomass (CENBIO) URL [Visita: 26.05.2019]Brief factsheet giving an oversight over most common managed aquifer recharge methods. With an Australian perspective.
CSIRO (2010): Managed Aquifer Recharge. Frequently Asked Questions. Commonwealth Scientific and Industrial Research Organisation (CSIRO) URL [Visita: 26.05.2019]This book repared by partners of the Sustainable Sanitation Alliance (SuSanA) network is a real eye-opener. It takes a look at some of the methods that have worked well in the past, to guide us in solving the problems of the future. By addressing sanitation as a key element of the urban metabolism, and by linking sanitation with urban planning and neighbouring sectors like solid waste management or waste recycling, it allows for a holistic approach. In the cities of tomorrow, we will need to focus more on recycling energy. A good example being biogas generation from wastewater and sludges. Water will also become an increasingly scarce commodity. Greywater (from showers and sinks) can be treated in urban constructed wetlands or used to water and fertilise urban green spaces. Such examples of productive sanitation systems will form an integral part of infrastructure in sustainable cities.
LUETHI, C. PANESAR, A. SCHUETZE, T. NORSTROEM, A. MCCONVILLE, J. PARKINSON, J. SAYWELL, D. INGE, R. (2011): Sustainable Sanitation in cities: a framework for action. Sustainable Sanitation Alliance (SuSanA) & International Forum on Urbanism (IFoU), Papiroz Publishing House, The Netherlands URL [Visita: 26.05.2019]Biological Wastewater Treatment in Warm Climate Regions gives a state-of-the-art presentation of the science and technology of biological wastewater treatment, particularly domestic sewage. The book covers the main treatment processes used worldwide with wastewater treatment in warm climate regions given a particular emphasis where simple, affordable and sustainable solutions are required. The 55 chapters are divided into 7 parts over two volumes: Volume One (also available in the SSWM library): Introduction to wastewater characteristics, treatment and disposal; Basic principles of wastewater treatment; Stabilisation ponds; Anaerobic reactors; Volume Two: Activated sludge; Aerobic biofilm reactors; Sludge treatment and disposal.
SPERLING, M. von LEMOS CHERNICHARO, C.A. de (2005): Biological Wastewater Treatment in Warm Climate Regions Volume 2. London: International Water Association (IWA) Publishing URL [Visita: 26.05.2019]Biological Wastewater Treatment in Warm Climate Regions gives a state-of-the-art presentation of the science and technology of biological wastewater treatment, particularly domestic sewage. The book covers the main treatment processes used worldwide with wastewater treatment in warm climate regions given a particular emphasis where simple, affordable and sustainable solutions are required. The 55 chapters are divided into 7 parts over two volumes: Volume One: (1) Introduction to wastewater characteristics, treatment and disposal; (2) Basic principles of wastewater treatment; (3) Stabilisation ponds; (4) Anaerobic reactors; Volume Two (also available in the SSWM library): (5) Activated sludge; (6) Aerobic biofilm reactors; (7) Sludge treatment and disposal.
SPERLING, M. von LEMOS CHERNICHARO, C.A. de (2005): Biological Wastewater Treatment in Warm Climate Regions Volume 1. London: International Water Association (IWA) Publishing URL [Visita: 26.05.2019]The webpage of Midwest Rural Energy Council (MREC) provides a wide range of information on implementing small- and mid-scale biogas plantations in order to produce electricity.
Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. This book covers the following topics: wastewater characteristics (flow and major constituents), impact of wastewater discharges to rivers and lakes, overview of wastewater treatment systems, complementary items in planning studies.
SPERLING, M. von (2007): Wastewater Characteristics, Treatment and Disposal. (= Biological Wastewater Treatment Series , 1 ). London: International Water Association (IWA) Publishing URL [Visita: 26.05.2019]This two-page factsheet by the European Biomass Industry Association gives a brief and concise overview on the topic of Short Rotation Plantations. Especially the benefits of this technology are highlighted.
EUBIA (2008): Short Rotation Plantations: Opportunities for Efficient Biomass Production with the Safe Application of Wastewater and Sewage Sludge. Brussels: European Biomass Industry Association (EUBIA) URL [Visita: 26.05.2019]This report gives an overview on the use and disposal of biosolids/sewage sludge in the US between 1998 and 2010.
U.S. EPA (1999): Biosolids Generation, Use, and Disposal in the United States. Washington: United States Environmental Protection Agency URL [Visita: 26.05.2019]This factsheet of Sustainable Sanitation Alliance describes the impact of greenhouse gases on climate change and focuses on the advantages of renewable energies. Therefore many different technologies like production of biogas or short-rotation-plantations are mentioned.
SUSANA (2009): Links between Sanitation, Climate Change and Renewable Energies. Eschborn. (= SuSanA fact sheet 09/2009 ). Sustainable Sanitation Alliance (SuSanA) URL [Visita: 26.05.2019]A WASHTech literature review of existing frameworks for technology assessment reveals that there is a gap for a WASH technology assessment tool and a WASH technology uptake tool. The authors of the review, which supports the development of WASHTech’s Technology Assessment Framework, (TAF), conclude that a computer tool based on an algorithm is not appropriate because it is too rigid. Choosing a manageable number of appropriate indicators is key for assessing new technologies.
OLSCHEWSKI, A. DANERT, K. FUREY, S. KLINGEL, F. (2011): Review of Frameworks for Technology Assessment. WASHTech Deliverable 3.1. St. Gallenand The Hague : Swiss Centre for Development Cooperation in Technology and Management (SKAT) and International Water and Sanitation Centre (IRC) URL [Visita: 26.05.2019]A short booklet explaining the notion of ecological sanitation, closing the water and the nutrient/energy loops and also giving practice examples.
ALSEN, K.W. ; JENSSEN, P. (2004): Ecological Sanitation: for Mankind and Nature. Aas: Norwegian University of Life Sciences URL [Visita: 26.05.2019]This is a chapter on a rainwater-harvesting manual from the Public Health Engineering Department in India. It gives an extensive overview on different groundwater recharge technologies and approaches.
PHEDM (n.y): Chapter 9: Artificial Groundwater Recharge. Entradas: PHEDM (n.y): Rain Water Harvesting ManuaI. Meghalaya State Centre, India: . URL [Visita: 26.05.2019]This document provides an overview and introduction on biogas sanitation (anaerobic digestion) for blackwater or for brown water, or excreta treatment for reuse in developing countries. The main technologies discussed are biogas settlers (BSs), biogas septic tanks, anaerobic baffled reactor (ABRs), anaerobic filter (AFs) and upflow anaerobic sludge blanket reactors (UASBs).
MANG, H.-P. LI, Z. (2010): Technology Review of Biogas Sanitation. (= Technology Review ). Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH URL [Visita: 26.05.2019]This Technical Brief reviews some of the options for wastewater treatment in low- and middle-income communities. It should be used as a guide to the main options available.
WELL (n.y): Wastewater Treatment Options. (= WELL Technical Briefs , 64 ). Loughborough: Water and Environmental health at London and Loughborough (WELL) URL [Visita: 26.05.2019]This practical guideline on the use of urine in agricultural productions gives some background information on basic plant requirements and how they can be met with urine as a liquid fertiliser.
RICHERT, A. GENSCH, R. JOENSSON, H. STENSTROEM, T.A. DAGERSKOG, L. (2010): Practical Guidance on the Use of Urine in Crop Production. (= EcoSanRes Publication Series, Report No. 2010-1 ). Stockholm: Stockholm Environment Institute (SEI) URL [Visita: 26.05.2019]The Netherlands Development Organisation (SNV) library hosts an extensive choice of domestic biogas reports from around the world domestic biogas.