In the densely populated semi-arid territory around Delhi, the water demand is rising continuously, while the surface- and groundwater resources are threatened by contamination and over exploitation. This is a typical scenario in many newly industrialising and developing countries, where new approaches for a responsible resources management have to be found. Bank filtration holds a great potential, thus being a low tech method and benefiting from the storage and contaminant attenuation capacity of the natural soil/rock. For this study, three field sites have been constructed to investigate bank filtration in different environments in and around the megacity with a main focus on inorganic contaminants. Hydraulic heads, temperature gradients and hydrochemistry of surface water and ground water were analysed in three different seasons. Depending on site-specific conditions, distinct hydrogeological conditions were observed and both positive and negative effects on water quality were identified. Most concerning issues are the impact of anthropogenic ammonia, the mixing with ambient saline groundwater and the mobilisation of arsenic during the reductive dissolution of manganese- and iron-(hydr)oxides. Positive aspects are the dilution of contaminants during the mixing of waters from different sources, the sorption of arsenic, denitrification, and the precipitation of fluoride under favourable conditions.
LORENZEN, G. ; SPRENGER, C. ; TAUTE, T. ; PEKDEGER, A. ; MITTAL, A. ; MASSMANN, G. (2010): Assessment of the Potential for Bank Filtration in a Water-stressed Megacity (Delhi, India). In: Environmental Earth Sciences: Volume 61 , 1419-1434. URL [Accessed: 18.03.2015]