

Modelación Física del Comportamiento Hidráulico en Sedimentador Circular de Flujo Horizontal-Edición Única

Title	Modelación Física del Comportamiento Hidráulico en Sedimentador Circular de Flujo Horizontal-Edición Única
Issue Date	2001-12-01
Publisher	Instituto Tecnológico y de Estudios Superiores de Monterrey
Item Type	Tesis de maestría
Downloaded	28/11/2018 22:50:12
Link to Item	http://hdl.handle.net/11285/568329

CAMPUS MONTERREY
DIVISION DE GRADUADOS EN INGENIERIA
PROGRAMA DE GRADUADOS EN INGENIERIA

MODELACION FISICA DEL COMPORTAMIENTO HIDRAULICO EN SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL

PRESENTADA COMO REQUISITO PARCIAL
PARA OBTENER EL GRADO ACADEMICO DE
MAESTRO EN CIENCIAS
CON ESPECIALIDAD EN SISTEMAS AMBIENTALES

ING PAOLA VANESSA TREJO DE LA VEGA

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY

CAMPUS MONTERREY

DIVISION DE GRADUADOS EN INGENIERIA PROGRAMA DE GRADUADOS EN INGENIERIA

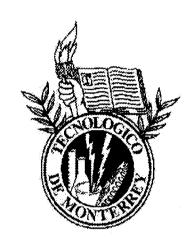
MODELACION FISICA DEL COMPORTAMIENTO HIDRAULICO EN SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL

PRESENTADA COMO REQUISITO PARCIAL

PARA OBTENER EL GRADO ACADEMICO DE

MAESTRO EN CIENCIAS

CON ESPECIALIDAD EN SISTEMAS AMBIENTALES


ING. PAOLA VANESSA TREJO DE LA VEGA

MONTERREY, N. L.

DICIEMBRE DE 2001

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY CAMPUS MONTERREY

DIVISION DE GRADUADOS EN INGENIERIA PROGRAMA DE GRADUADOS EN INGENIERIA

MODELACIÓN FÍSICA DEL COMPORTAMIENTO HIDRAULICO EN SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL

PRESENTADO COMO REQUISITO PARCIAL PARA OBTENER EL GRADO ACADEMICO DE MAESTRO EN CIENCIAS CON ESPECIALIDAD EN SISTEMAS AMBIENTALES

ING. PAOLA VANESSA TREJO DE LA VEGA

MONTERREY, N. L.

DICIEMBRE 2001

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY CAMPUS MONTERREY

DIVISION DE GRADUADOS EN INGENIERIA PROGRAMA DE GRADUADOS EN INGENIERIA

Los miembros del comité de tesis recomendamos que el presente proyecto de tesis de la Ing. Paola Vanessa Trejo de la Vega sea aceptado como requisito parcial para obtener el grado académico de Maestro en Ciencias con especialidad en:

SISTEMAS AMBIENTALES

Comité de Tesis

Dr. Enrique Cázares Rivera Asesor

Dr. Jorge H. García Orozco

Sinodal

Ing/Ignacio Lujan

Sińodal

APROBADO

Dr. Federico Viramontes Brown

Director del Programa de Graduados en Ingeniería

AGRADECIMIENTOS

A mi tía Marina que sin su ayuda esta etapa no hubiera sido posible.

A mis padres por su incondicional apoyo, confianza y paciencia.

A mi hermana por el hermoso sobrino.

Al Dr. Enrique Cázares Rivera por su incondicional apoyo y por todos sus conocimientos compartidos.

Al Dr. Jorge García y al Ing. Ignacio Luján por su apoyo, consejos y enseñanzas como comité de tesis.

A Nora por su gran ayuda, consejos y apoyo.

Al Dr. Federico Viramontes Brown, quien además de ser un excelente profesor, es un gran amigo y una excelente persona.

A mi querida *Alma Mater* la Universidad de las Américas-Puebla, en especial al Dr. René Reyes Mazzoco y al M. C. Luis Ríos Casas por las excelentes bases y el gran ejemplo que fueron de valiosa ayuda en esta etapa académica.

A esas personas con quienes, a pesar de la distancia, se puede contar incondicionalmente, muchas gracias amigos por estar siempre ahí, Amiro, Ulises y una gran lista de etcéteras.

A todos aquellos con quienes compartí la maestría y muchas cosas más, Apolinar, Marco, Laura, Ruth, Nuria, Sergio, Luis Miguel y Daniel.

A ti, por haberme permitido conocerte y compartir tantos momentos.

INDICE

AGRADECIMIENTOS	i	
LISTA DE TABLAS	ii	
LISTA DE FIGURAS		
RESUMEN		
INTRODUCCIÓN	1	
CAPITULOS		
I. Marco Teórico		
1.1 Sedimentación	4	
1.2 Tanques de sedimentación	4	
1.3 Tipos de clarificadores	8	
1.4 Criterios de diseño	10	
1.5 Estructura de entrada	11	
1.6 Estructuras de salida	11	
1.7 Recuperación de lodo	12	
1.8 Similitud en escalamiento	13	
1.8.1 Ecuaciones de variación para escalamiento	13	
1.8.2 Similitud geométrica	15	
1.8.3 Similitud cinética	16	
1.8.4 Similitud dinámica	17	
II. Uso de trazadores en la evaluación del comportamiento hidráulico	18	
2.1 Análisis de flujos y factores que determinan los periodos de retención	18	
2.2 Influencia del tiempo de retención	18	
2.3 Uso de trazadores para determinar el tiempo de retención y	21	
características hidráulicas de un reactor		
2.4 Análisis de las características de un sedimentador	22	

	Indice
2.5 Ensayo con trazadores	25
2.6 Sustancias trazadoras	25
2.7 Procedimiento	25
2.7.1 Adición en forma instantánea	26
2.7.2 Adición en forma continua	26
2.8 Análisis	26
2.9 Limitaciones de la prueba con trazadores	27
2.10 Cálculo de cantidad de trazador	27
2.11 Experiencia con el uso de trazador	28
III. Materiales y Métodos	
3.1 Materias primas	30
3.2 Métodos de análisis	33
IV. Discusión y Discusión de resultados	
4.1 Diseño y construcción del sedimentador	35
4.2 Instalación del sedimentador	40
4.3 Elección del método de trazadores	49
4.4 Pruebas de patrón de flujo (visualización)	52
4.4.1 Primera prueba de patrón de flujo	52
4.4.2 Segunda prueba de patrón de flujo	53
4.4.3 Tercera prueba de patrón de flujo	54
4.4.4 Cuarta prueba de patrón de flujo	56
4.4.5 Quinta prueba de patrón de flujo	57
4.4.6 Figuras de las pruebas de visualización	58
4.5 Pruebas de patrón de flujo (medición)	61
4.5.1 Inyección instantánea	61
V. Conclusiones y recomendaciones	
5.1 Conclusiones	69
5.2 Recomendaciones	71

BIBLIOGRAFIA	72
APENDICES	
A. Criterios de diseño de sedimentadores circulares de acuerdo a diferentes	76
autores	
B. Dimensiones para sedimentador. Relación 4:1 Altura: Diámetro	81
C. Variación de TRH a partir de volúmenes constantes. Relación 1:4	84
Altura: Diámetro	
D. Dimensiones para sedimentador. Relación 1:10 Altura:Diámetro	88
E. Variaciones de TRH a partir de volúmenes constantes. Relación 1:10	91
Altura: Diámetro	
F. Dimensiones para Sedimentador Circular. Relación 1:7.5 Altura:Diámetro	95
G. U Calculada con Fr=0.0748 y L=H Lado + H Centro	100
H. Sedimentador típico	104
I. Cálculos para sedimentador de 1 metro de Diámetro y 0.15 m de Alto	106
J. Pruebas de sal como trazador	108
K. Pruebas de hipoclorito como trazador	136

LISTA DE TABLAS

1.1	Descripción de los cuatro tipos de sedimentación.	5
4.1	Coeficientes de gasto para diferentes tipos de orificio de pared gruesa.	44
	(Sotelo, 1991)	
4.2	Resultados para el cálculo de los vertedores.	45
A .1	Datos de diseño para sedimentadores primarios. (Metcalf, 1990)	77
A.2	Dimensiones de sedimentadores circulares. (Metcalf, 1990)	77
A.3	Dimensiones de sedimentadores circulares (Qasim).	78
A.4	Dimensiones de cargas superficiales y profundidades para clarificadores	78
	primarios. (Reynolds, 1982)	
A.5	Diseño de cargas superficiales (Qasim).	78
A .6	Información típica para tanques de sedimentación rectangulares y circulares	79
	para tratamiento primario y secundario (Tchobanoglous).	
A .7	Tiempo de retención. (Qasim, 1985)	79
A.8	Criterios recomendados para sedimentadores secundarios para tratamiento de	80
	aguas residuales municipales. (Reynolds, 1982)	

LISTA DE FIGURAS

1.1	Tipos de sedimentación. (Weber, 1972)	5
1.2	Sedimentador circular de flujo horizontal.	8
1.3	Sedimentador rectangular de flujo horizontal.	9
1.4	Unidad por contacto de sólidos. (Nalco, 1989)	10
1.5	Rastra con colector de lodos. (Nalco, 1989)	13
2.1	Influencia del tiempo de retención y características hidráulicas en la	20
	eficiencia de un sedimentador. (Pérez, 1992)	
2.2	Curvas típicas de concentración de trazadores en el efluente de unidades con	21
	diferentes características hidráulicas.	
2.3	Modelo físico de flujo pistón con corto circuito.	22
2.4	Modelo físico de mezcla completa con corto circuito.	23
2.5	Influencia del corto circuito en unidad de flujo pistón.	23
2.6	Influencias del corto circuito en unidad de mezcla completa.	24
2.7	Flujo pistón con espacios muertos.	24
2.8	Configuración de un trazador.	26
4.1	Diseño final del sedimentador.	39
4.2	Modelo final del sedimentador.	40
4.3	Conexiones de entrada y purga de lodos.	41
4.4	Configuración de salida en el canal Configuración.	41
4.5	Configuración final de los vertedores.	43
4.6	Altura tomada para el cálculo de flujo a través de orificios.	44
4.7	Configuración de tubos de entrada a) diseño b) modelo.	46
4.8	Rastra con modificación.	46
4.9	Diseño de rastra con modificaciones	47
4.10	Vista de la rastra con motor y mampara de 10 cms de diámetro.	48
4.11	Rastra con mampara de 15 cms de diámetro.	48
4.12	Localización de puertos para toma de muestras	49
4.13	Espacio muerto.	55
4.14	Prueba de bajo flujo.	58

4.15	Prueba de alto flujo.	59
4.16	Alto flujo con mampara de 15 cms de diámetro.	59
4.17	Análisis de la influencia del viento.	60
4.18	Prueba de bajo flujo sin mampara.	61
4.19	Prueba de bajo flujo con mampara de 10 cms.	62
4.20	Medición de conductividades en superficie y fondo a bajo flujo.	63
4.21	Medición de conductividades en superficie y fondo a alto flujo.	64
4.22	Prueba de flujo bajo sin mampara con hipoclorito.	65
4.23	Prueba a flujo alto sin mampara con hipoclorito.	66
4.24	Prueba con rastra y mampara de 10 cms de diámetro a alto flujo	67

Resumen.

La importancia de los tanques de sedimentación en los trenes de tratamiento de aguas, ha llevado al estudio del comportamiento de estas unidades al registrarse variaciones de las condiciones teóricas con respecto a las reales de operación.

En este proyecto se llevó a cabo el diseño y construcción de un modelo físico de un sedimentador circular de flujo horizontal con lo que se estudió el comportamiento hidráulico de éstas unidades.

Se utilizó un modelo físico escala 1:20 de un modelo típico, teniendo las dimensiones de 1 metro de diámetro por 15 centímetros de alto. El escalamiento hidráulico se hizo en base al Número de Froude.

Las estructuras utilizadas fueron dos mamparas de acrílico, una de 10 cms de diámetro y 18 de alto mientras que la otra contó con 15 cms de diámetro y 15 de altura. La rastra utilizada fue de acrílico en su totalidad. Las pruebas consistieron en la variación de las estructuras en el sedimentador, así como la variación de los flujos para determinar las variables más significativas en el comportamiento hidráulico de los sedimentadores.

Se realizaron dos diferentes análisis de patrón de flujo, una consistió en la visualización de una tinta inyectada a la unidad, mientras que para la otra se midió la conductividad de soluciones salinas introducidas a la unidad. Cada una de estas pruebas se realizó con dos flujos diferentes, el primero de 336.16 (flujo bajo) y el segundo de 813 ml/min (flujo alto) teniendo tiempos de retención hidráulicos de 5.8 y 2.4 horas respectivamente.

En todos los casos se registró la densidad del trazador introducido así como la temperatura. En el caso de la medición de conductividades, para cada muestra se registró tanto la conductividad como la temperatura.

Las deficiencias encontradas fueron: la disminución del Tiempo de Residencia Hidráulico (TRH) del teórico, siendo el real más bajo, así como la presencia de cortos circuitos debido a la ausencia de mamparas y los espacios muertos ocasionados por viento.

El empleo de los modelos físicos en el estudio del comportamiento hidráulico de las unidades de proceso de una planta de tratamiento puede ser de utilidad en delucidar las principales variables que afectan este comportamiento y ayudar a mejorar su comportamiento y eficiencia.

Introducción.

1 Justificación

El problema de la contaminación del agua ha sido desde hace tiempo motivo de una gran preocupación para la población de todos los países, ya que nos estamos enfrentando a un problema tanto de escasez del agua como de su contaminación.

Recientemente estos problemas se han ido incrementando debido al crecimiento tanto de industrias como de población en las ciudades. Esto ha ido exigiendo nuevos esquemas en el tratamiento de aguas residuales ya que existen diferentes métodos de tratamiento de agua residual dependiendo de los contaminantes que esta contenga, así como del uso que se le vaya a dar posteriormente.

El surgimiento de normas ambientales que regulan los efluentes y descargas, ha dado la pauta al surgimiento de nuevos tratamientos para obtener una mejor calidad del agua tratada que se descarga a los diferentes cuerpos receptores. En consecuencia, ha surgido toda una amplia gama de procesos para tratamiento de aguas con diferentes tecnologías según las necesidades de cada una de las empresas, de la protección de cuerpos receptores y sobre todo, del factor económico que juega un papel muy importante en la selección del sistema de tratamiento.

2 Definición del problema.

Actualmente la mayoría de las plantas de tratamiento de agua, tanto en México como en el resto del mundo incluyen en sus sistemas de tratamiento, unidades de sedimentación, las cuales tienen la función de separar por acción de la gravedad las partículas suspendidas. Esta operación unitaria es una de las más utilizadas en el tratamiento de aguas residuales y potabilización.

Los tanques de sedimentación primaria pueden llegar a ser el principal tratamiento del agua residual, o se pueden emplear como paso previo a un tratamiento posterior. Cuando se utilizan como único medio de tratamiento, estos tanques sirven para la remoción de:

- 1) Sólidos sedimentables;
- 2) Aceite libre, grasas y otras materias flotantes;
- 3) Materia orgánica.

Cuando los tanques de sedimentación primaria se emplean como paso previo de tratamientos biológicos, su función es la reducción de la carga afluente a las unidades de tratamiento biológico. Los tanques de sedimentación primaria bien dimensionados y operados con eficiencia eliminan entre el 50 y el 70% de los sólidos suspendidos y entre el 25 y 40% de la DBO₅. (Metcalf, 1996)

Los tanques de sedimentación también se han empleado como tanques de tormentas, caso en el que se proyectan para proporcionar un tiempo de retención hidráulica corto a los caudales en exceso aliviados de redes de alcantarillado (10 a 30 minutos). Su finalidad es eliminar una parte sustancial de los sólidos sedimentables que, de otro modo, se descargarían directamente al agua receptora y podrían formar sedimentos. Tales tanques se han empleado, asimismo, para procurar periodos de tiempo suficientes para la cloración efectiva de los caudales aliviados. (Metcalf, 1996)

En muchos casos, los sedimentadores no operan conforme a lo especificado o bajo las características para las que fueron diseñados lo que ocasiona alteraciones en el funcionamiento y desempeño de estas unidades, ya que el comportamiento real dista mucho de ser el ideal. Usualmente, el diseño de los sedimentadores se basa en pruebas de laboratorio y es sabido que en el momento de la operación las condiciones reales distan mucho de las condiciones de laboratorio ya que se presentan múltiples variaciones dependiendo de muchos factores tales como los cambios de flujos, carga orgánica e inclusive diferencias entre las características del agua del influente y el agua en el tanque.

Uno de los principales problemas que afecta el desempeño de los sedimentadores tienen su orígenes en la hidrodinámica dentro ellos la cual, en algunos casos, no resulta ser la prevista en el diseño lo que lleva a problemas en el resto del tratamiento.

Debido a la importancia del comportamiento hidráulico en estas unidades, se han desarrollado modelos para poder, de cierta manera, predecir este comportamiento y las repercusiones de las desviaciones del proceso con respecto al comportamiento en estudios de laboratorio.

Los modelos que se han desarrollado para el estudio del comportamiento hidráulico de sedimentadores son tanto matemáticos como físicos. Los modelos matemáticos tienen como principal desventaja el ser muy específicos para los casos en que fueron desarrollados, sobre todo en lo que respecta a las condiciones de frontera, lo que impide realizar escalamientos.

Los modelos físicos basan generalmente su diseño en la similitud geométrica e hidráulica a través de números adimensionales como el Número de Reynolds (Re) para el flujo de agua a través de la tubería y el Número de Froude (Fr) para la velocidad horizontal del fluido la entrada al sedimentador. Estas características hacen a los modelos físicos fácilmente escalables.

La construcción de un modelo físico se empleará en este proyecto para la visualización de los fenómenos hidráulicos en sedimentadores.

3 Objetivo

Construir un modelo físico de un sedimentador circular de flujo horizontal que permita el análisis de las diferentes variables que afectan su comportamiento hidráulico.

Capítulo I

Marco Teórico

1.1 Sedimentación.

La sedimentación consiste en la separación, por acción de la gravedad, de las partículas suspendidas cuyo peso específico es mayor que el del agua. Es una de las operaciones unitarias más utilizadas en el tratamiento de las aguas residuales.

Esta operación se emplea para la eliminación de arenas, de la materia en suspensión en forma de flóculo biológico en los sedimentadores secundarios en los procesos de lodos activados, de los flóculos químicos cuando se emplea la coagulación química y para la concentración de sólidos en los espesadores de lodos. En la mayoría de los casos, el principal objetivo es obtener un efluente clarificado, pero en ocasiones también producir un lodo cuya concentración de sólidos permita su retorno a la unidad de aereación. (Metcalf, 1996)

En función de la concentración y de la tendencia a la interacción de las partículas, se pueden producir cuatro tipos de sedimentación: discreta, floculenta, retardada (o zonal) y por compresión. La Figura 1.1 muestra los diferentes tipos de sedimentación. Es frecuente que durante el proceso de sedimentación, ésta se produzca por diferentes fases en cada tipo y también es posible que los cuatro tipos de sedimentación se lleven a cabo simultáneamente.

1.2 Tanques de Sedimentación

Las funciones desarrolladas por los tanques de sedimentación en el tratamiento del agua y agua residual constituyen frecuentemente una parte fundamental en el proceso global de tratamiento. Un diseño pobre del sedimentador da lugar a la propagación del problema a las unidades sucesivas dentro de la planta y disminuye la eficiencia del proceso global.

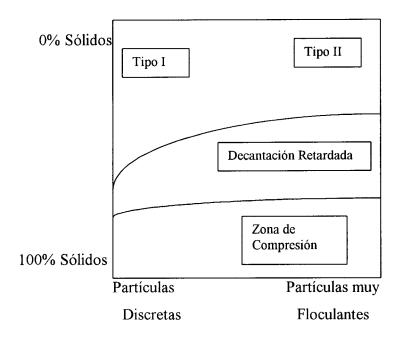


Figura 1.1. Tipos de sedimentación (Weber, 1972).

En la Tabla 1.1 se muestran las características generales de los diferentes tipos de sedimentación.

Tabla 1.1. Descripción de los cuatro tipos de sedimentación.

Descripción	Aplicación/Situaciones en			
	que se presenta			
Sedimentación de partículas	Eliminación de las arenas			
en una suspensión con baja	del agua residual.			
concentración de sólidos.				
Las partículas sedimentan				
como entidades individuales				
y no existe interacción				
sustancial con las partículas				
vecinas.				
	Sedimentación de partículas en una suspensión con baja concentración de sólidos. Las partículas sedimentan como entidades individuales y no existe interacción sustancial con las partículas			

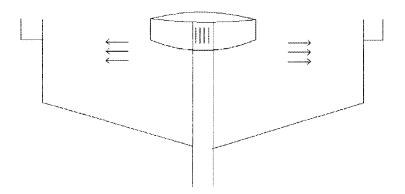
Floculenta	Suspensión bastante diluida	Eliminación de una
(Tipo II)	•	fracción de los sólidos en
	o floculan, durante el	
	,	residual bruta en los tanques
	•	de sedimentación primaria y
	aumentan de masa y	
	sedimentan a mayor	sedimentadores
	velocidad.	secundarios. Eliminación de
	volocidad.	flóculos químicos de los
		tanques de sedimentación.
Retardada o zonal	Suspensiones de	Se presenta en los tanques
(Tipo III)	concentración intermedia,	de sedimentación
(Tipo III)	,	secundaria empleados en las
	•	instalaciones de tratamiento
	•	
	suficientes para entorpecer	biológico.
	la sedimentación de las	
	partículas vecinas. Las	
	partículas tienden a	
	permanecer en posiciones	
	relativas fijas y la masa de	
	partículas sedimenta como	
	una unidad. Se desarrolla	
	una interfase sólido-líquido	
	en la parte superior de la	
	masa que sedimenta.	
Compresión	Sedimentación en la que las	Generalmente se produce en
(Tipo IV)	partículas están	las capas inferiores de una
	concentradas de tal manera	masa de lodo de gran
	que se forma una estructura	espesor, tal como ocurre en
	y la sedimentación sólo	el fondo de los
	puede tener lugar como	sedimentadores secundarios

consecuencia	de	la	profundos	y	en	las
compresión	de	esta	instalaciones			de
estructura. La	compre	esión	espesamiento	de lo	odos.	
se produce por	el pes	o de				
las partículas	que se	van				
añadiendo cons	tanteme	nte a				
la estructi	ıra	por				
sedimentación	desde	el				
líquido sobrenac	dante.					

La función primaria del proceso de sedimentación consiste en la eliminación de la materia decantable en suspensión produciendo un líquido claro que sobrenada. Sin embargo, el tanque de sedimentación o clarificador debe también recoger y descargar un volumen de lodos.

En el caso de los sedimentadores secundarios, éstos son utilizados para la eliminación eficaz de los sólidos de la alimentación y el espesamiento de lodos para su retorno a la unidad de aereación.

En los sedimentadores existen factores que disminuyen el rendimiento del tanque y que pueden evaluarse estudiando el comportamiento hidráulico dentro estas unidades. Los efectos de la canalización en los tanques de sedimentación pueden disminuirse cubriendo el tanque. Esto elimina el efecto de las corrientes inducidas por el viento o el calor. La colocación de placas o tabiques deflectores, mecanismos distribuidores de la alimentación y mamparas de alimentación dispersadoras de la velocidad, pueden dar lugar a una disminución de la canalización y aumento de la eficiencia. (Weber, 1972)


Los factores hidráulicos que influyen en la eficiencia de los sedimentadores y que deben ser consideradas son principalmente: corrientes remolino inducidas por la inercia

del flujo de entrada, corrientes en la superficie causadas por la acción del viento, corrientes verticales inducidas por la estructura externa, corrientes convectivas verticales inducidas por la diferencia de temperatura entre el influente y el contenido del tanque, densidad de corriente causada por diferencia de temperaturas del influente con el agua dentro de la unidad y corrientes inducidas debido a las rastras y al sistema de remoción de lodo.

1.3 Tipos de clarificadores.

Los clarificadores se dividen en tres categorías: de flujo horizontal, contacto de sólidos y superficie inclinada.

<u>Flujo horizontal</u>: los gradientes de velocidad son predominantemente en una dirección horizontal. Los tipos más comunes son rectangulares y circulares. En la Figura 1.2 se presenta un sedimentador circular de flujo horizontal y en la Figura 1.3 se puede apreciar un sedimentador rectangular de flujo horizontal.

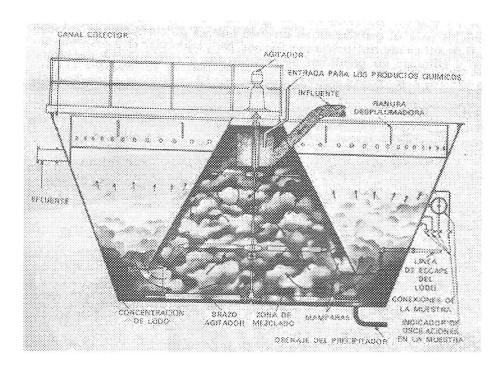
1.2 Sedimentador circular de flujo horizontal.

Figura 1.3 Sedimentador rectangular de flujo horizontal.

La selección de la configuración de la geometría de las unidades depende del tamaño de la instalación con la que se cuenta, de las condiciones locales, de las normas que se deban cumplir y sobretodo de la inversión requerida.

<u>Contacto de Sólidos</u>: pueden ser de recirculación de lodos y de lecho de lodos, ambas realizan mezclado químico, floculación y clarificación en una sola unidad.

Estas unidades al presentar una alta concentración de lodos, hasta de 100 veces más que la de un clarificador ordinario, se utilizan principalmente en el ablandamiento por cal ya que el aumento de sólidos favorece las reacciones químicas de desestabilización y crecimiento de partículas.


En la unidad de recirculación de lodos, el volumen de lodo se tiene a partir de la recirculación de éste de la zona de floculación a la de clarificación. En el lecho de lodos, los lodos se concentran en el lecho fluidizado donde se presenta el contacto del flujo con los sólidos. Los flóculos mayores, al pasar por el lecho, se asientan por gravedad mientras que los flóculos finos son colados y adsorbidos.

Son utilizados eficientemente para suspensiones químicas floculantes por la facilidad de aglomeración de las partículas lo que las ayuda a mantenerse en el lecho de la unidad. Por otro lado, estas unidades no son recomendadas para lodos biológicos

debido a que los largos tiempos de retención de lodos pueden crear condiciones ascépticas. En la Figura 1.4 se presenta un sedimentador por contacto de sólidos.

<u>Placas o tubos inclinados</u>: las unidades de superficie inclinada utilizan placas o tubos inclinados para dividir la profundidad en unas más pequeñas. El ángulo de inclinación se calcula de acuerdo al rendimiento que se desee.

Los tubos son de paredes delgadas, pueden tener formas circulares, hexagonales o cualquier otra forma geométrica. El flujo de entrada pasa por estos tubos de manera ascendente, los sólidos sedimentan dentro de los tubos y se depositan.

1.4 Unidad por contacto de sólidos. (Nalco, 1989)

1.4 Criterios de diseño.

Existen diferentes criterios de diseño para los sedimentadores dependiendo de las variables en que se quiera basar el diseño. Cabe mencionar que no hay un criterio único en los diseño, por lo cual existen reportados por diferentes autores diversos rangos que

pueden ser útiles. En el Apéndice A se muestran diferentes criterios de diseño para cargas superficiales, tiempos de retención y dimensiones reportados por autores como Qasim, Tchobanoglus, Metcalf y Reynolds.

1.5 Estructura de Entrada.

Deben ser diseñadas para lograr una distribución uniforme de la alimentación sobre la sección transversal de la zona de sedimentación e iniciar un flujo horizontal o radial según sea el caso, así como disipar la corriente de chorro del influente por medio de mamparas o deflectores. Todo es importante para eliminar la turbulencia y efectos de canalización que repercuten negativamente en la hidráulica de los sedimentadores.

Las estructuras de entrada en sedimentadores circulares pueden ser centrales o periféricas. En los sedimentadores con estructura de alimentación central, la salida del fluido es por la periferia del tanque. Una mampara concéntrica al tubo de alimentación realiza la distribución en dirección radial del flujo.

A diferencia de los tanques con entradas centrales, los de entradas periféricas presentan la siguiente configuración: el influente se distribuye a lo largo de orificios en toda la periferia y en este caso se cuenta con una mampara circular suspendida en una distancia corta de la pared del tanque para formar un espacio anular por el cual el flujo se descarga en una dirección tangencial. El agua residual fluye en un espiral alrededor del tanque y debajo de la mampara.

1.6 Estructura de Salida.

Las estructuras deben contemplar las siguientes funciones: proveer una distribución uniforme del flujo en la mayor área posible, minimizar el ascenso de las partículas en su escape al efluente y reducir el escape de materia flotante al efluente.

En los sedimentadores circulares, la estructura de salida puede encontrarse en el centro del clarificador o a lo largo de la periferia. La estructura central generalmente provee altos gradientes de velocidad que pueden resultar en un acarreo de sólidos.

1.7 Recuperación de lodo.

Para que se lleve a cabo la función de recuperación de lodo, en los sedimentadores que se utilizan como espesadores de lodo, éstos cuentan con una pendiente de fondo del tanque la cual recolecta el lodo existente en la unidad. En el caso de los sedimentadores circulares, la pendiente es aproximadamente 40-100 mm/m de diámetro.

En los sedimentadores circulares se utilizan dos tipos de equipos para recuperar el lodo:

- 1. El mecanismo de rastras se instala con un brazo radial con rastras en un ángulo soportado en el centro. Los sedimentadores que excedan los 10 metros de diámetro normalmente tienen un eje en el centro, mientras que los de diámetros pequeños utilizan soportes. La velocidad es de 0.02-0.06 revoluciones por minuto.
- 2. Las unidades que son tipo succión se utilizan para el manejo de lodo más ligero. El mecanismo de succión se instala de manera similar a uno de rastras.

En la Figura 1.5 se muestra el esquema de un sedimentador con rastra colectora de lodos, la flecha indica la rastra de lodos.

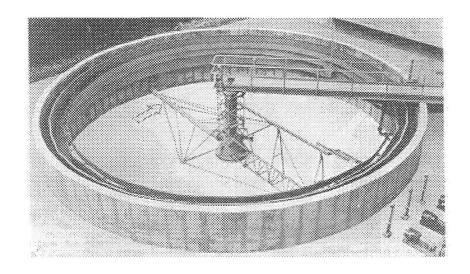


Figura 1.5 Rastra con colector de lodos. (Nalco, 1989)

1.8 Similitud en escalamiento.

1.8.1 Ecuaciones de variación para escalamiento.

En muchos sistemas de flujo se puede elegir una longitud característica D y una velocidad característica V. Así, para el flujo en un tubo circular, se toma generalmente D como el diámetro del tubo y V como la velocidad media de flujo. Se puede definir las siguiente variables adimensionales y operaciones diferenciales:

$$v^* = \frac{v}{V}$$

$$p^* = \left(\frac{p - p_0}{\rho V^2}\right)$$

$$t^* = \frac{tV}{D}$$

$$x^* = \frac{x}{D}$$

$$y^* = \frac{y}{D}$$

$$z^* = \frac{z}{D}$$

$$\nabla^* = DV = \left(\delta_1 \frac{\partial}{\partial x^*} + \delta_2 \frac{\partial}{\partial y^*} + \delta_3 \frac{\partial}{\partial z^*}\right)$$

$$\nabla^{*2} = D^2 \nabla^2 = \frac{\partial^2}{\partial x^{*2}} + \frac{\partial^2}{\partial y^{*2}} + \frac{\partial^2}{\partial z^{*2}}$$

$$\frac{D}{Dt^*} = \left(\frac{D}{V}\right) \frac{D}{Dt}$$

En la segunda ecuación, po es una presión adecuada que se toma como referencia.

Las variables de x*, y* y z* representan el tensor de velocidades a través de la tubería.

Las ecuaciones de continuidad y movimiento para fluidos newtonianos de densidad y viscosidad constantes son:

Ecuación de continuidad:
$$(\nabla * v) = 0$$

Ecuación de movimiento:
$$\rho \frac{Dv}{Dt} = -\nabla p + \mu \nabla^2 v + pg$$

Estas dos ecuaciones pueden expresarse en función de las siguientes variables adimensionales, tomando $v=v^*V$, $(p-p_o)=p^*V^2$, etc.:

$$\left(\frac{1}{D}\nabla^* \bullet v^* V\right) = 0$$

$$\rho\left(\frac{V}{D}\right) \frac{D}{Dt^*} \left(v^* V\right) = -\left(\frac{1}{D}\nabla^* \bullet p^* \rho V^2\right) + \mu \frac{1}{D^2} \nabla^{*2} \left(v^* V\right) + pg$$

Al multiplicar la primera ecuación por $\ D/V \ y \ D/\rho V^2$ se obtiene:

$$\left(\nabla^* \bullet v^*\right) = 0$$

$$\frac{Dv^*}{Dt^*} = \nabla^* p^* + \left[\frac{\mu}{DV\rho}\right] \nabla^{*2} v^* + \left[\frac{gD}{V^2}\right] \frac{g}{g}$$

En estas formas adimensionales de las ecuaciones de variación, los factores de escalamiento, es decir, las variables que describen el tamaño total y la velocidad del sistema, así como sus propiedades físicas, se reúnen en dos números adimensionales:

Número de Reynolds:
$$Re = \left[\frac{DV\rho}{\mu}\right]$$

Número de Froude:
$$Fr = \left[\frac{V^2}{gD}\right]$$

Si en dos sistemas diferentes, los factores de escala son tales que los números de Froude y Reynolds son iguales para ambos, los dos sistemas están descritos por idénticas ecuaciones diferenciales adimensionales. Si además las condiciones adimensionales y de frontera son las mismas (lo cual sólo es posible si los dos sistemas son geométricamente semejantes), los dos sistemas son matemáticamente idénticos, es decir, que la distribución de velocidad adimensional $v^*(x^*,y^*,z^*,t^*)$ son las mismas y la distribución de presión adimensional $p^*(x^*,y^*,z^*,t^*)$ son las mismas en cada uno de ellos. Se dice entonces que tales sistemas son dinámicamente semejantes. En el paso de escala a proceso es conveniente mantener la semejanza dinámica.

1.8.2 Similitud geométrica.

Un modelo y un prototipo son geométricamente similares, sí y sólo sí, todas las dimensiones de la unidad en las tres coordenadas tienen el mismo rango de escala linear.

Todas las escalas longitudinales deben ser las mismas. Si el modelo se hiciera a una escala de 1:10 del prototipo, su longitud, grosor y altura deben ser cada una décima parte, y no sólo eso, sino que toda la forma deber ser una décima parte a lo largo y de los puntos homologados, que son los puntos que tiene la misma localización relativa. La similitud geométrica requiere que todos los puntos homologados estén relacionados por el mismo rango de escala linear. Esto aplica a la geometría del fluido así como a la geometría del modelo.

Todos los ángulos deben ser preservados en la similitud geométrica. Todas las direcciones del fluido se mantienen. Las orientaciones del modelo y del prototipo, respetando sus alrededores, deben ser idénticas.

1.8.3 Similitud cinética.

La similitud cinética requiere que el modelo y el prototipo tengan la misma relación de longitud y tiempo. La equivalencia del escalamiento longitudinal implica similitud geométrica, pero el escalamiento de tiempo equivale a consideraciones adicionales de cinética tal como el Número de Reynolds y Número de Mach.

Los flujos sin fricción dentro de una tubería, son cinéticamente similares si el Número de Froude es igual:

$$Fr_m = \frac{V_m^2}{gL_m} = \frac{V_p^2}{gL_p} = Fr_p$$

Los subíndices m y p, se refieren al modelo y prototipo respectivamente. Cabe destacar que el Número de Froude contiene solamente dimensiones de longitud y tiempo y, por lo tanto, es un parámetro que corrige la relación entre longitud y tiempo. El escalamiento de la longitud:

$$L_m = \alpha L_p$$

donde α es una relación adimensional, el escalamiento de velocidad es:

$$\frac{V_m}{V_p} = \sqrt{\left(\frac{L_m}{L_p}\right)} = \sqrt{\alpha}$$

y la escala de tiempo es:

$$\frac{T_m}{T_p} = \frac{\frac{L_m}{V_m}}{\frac{L_p}{V_p}} = \sqrt{\alpha}$$

Si la viscosidad, tensión superficial o compresibilidad es importante, la similitud cinética depende de la realización del alcance de la similitud cinética.

Debe tenerse en cuenta que, para poder mantener el Número de Reynolds se un modelo a un prototipo o viceversa, deben cambiarse las características del fluido tales como viscosidad o densidad.

1.8.4 Similitud dinámica.

La similitud dinámica existe cuando el modelo y el prototipo tienen la misma relación en escala de dimensión, tiempo, fuerza o masa en escala. La similitud geométrica es un requerimiento, sin el cual, no se puede proceder. La similitud dinámica existe, simultáneamente con la similitud cinética, si los coeficientes de la fuerza y la presión del modelo y del prototipo son idénticas. Esto resulta sí:

- Para flujo compresible, la correspondencia del Número de Reynolds, el Número de Mach y el calor específico tanto en el modelo como en el prototipo deben ser iguales.
- 2. Para flujo incompresible
 - a. Con una superficie limitante: El Número de Reynolds debe ser igual para el modelo y el prototipo.
 - b. Sin superficie limitante: Tanto para el modelo como para el prototipo, los Números de Reynolds, Froude y Weber (si es necesario), deben ser iguales.

Capítulo II

Uso de trazadores en la evaluación del comportamiento hidráulico

2.1 Análisis de flujos y factores que determinan los períodos de retención

En ocasiones las unidades de las plantas de tratamiento no presentan la eficiencia esperada debido a problemas en la hidráulica lo cual repercute en la distribución de flujo y afecta los periodos de retención hidráulica. Por esto, es importante tener información sobre los modelos de flujo presentes.

Modelos de Flujo

Los diferentes modelos de flujo se presentan a continuación:

Flujo intermitente, lotes, batch o discontinuo: se llena por completo la unidad donde se llevará a cabo el proceso, el fluido permanece dentro durante cierto periodo de tiempo y al término de éste, la unidad se vacía en su totalidad.

Flujo continuo: se clasifica en dos tipos pistón y con mezcla.

Flujo pistón: todas las partículas que entran junto con el fluido permanecen el mismo tiempo dentro de la unidad, no se presenta ningún tipo de mezcla entre el influente y el fluido contenido en la unidad. Este es el tipo de flujo que debe presentarse predominantemente en los sedimentadores.

Flujo con mezcla: presenta mezcla parcial o total del influente con el fluido contenido en la unidad.

2.2 Influencia del tiempo de retención

El tiempo de residencia de las partículas dentro de una unidad se describe como:

$$TRH = \frac{\forall}{O}$$

siendo:

TRH = tiempo de retención hidráulico

 \forall = volumen de la unidad

Q = flujo

Se puede definir como el tiempo promedio en que el flujo del fluido(Q) pasa por el volumen (V) de la unidad, o como el flujo másico de salida entre la masa existente.

En las unidades de sedimentación se aprecia una gran influencia en la disminución del tiempo de retención esperado al presentarse espacios muertos los cuales repercuten en la carga hidráulica superficial. La carga hidráulica superficial descrita como:

$$Vo = \frac{Q}{A}$$

puede a su vez escribirse como:

$$Vo = \frac{V}{t^*A}$$

Al presentarse incrementos en la carga superficial (Vo) o en las velocidades de sedimentación se reduce la eficiencia de remoción de la unidad. Los espacios muertos provocan la reducción del volumen efectivo del sedimentador, lo que provoca la disminución del tiempo de retención hidráulico y por consiguiente una eficiencia menos a la esperada en la unidad. En La Figura 2.1 se presenta la relación existente entre las eficiencias y las velocidades de sedimentación.

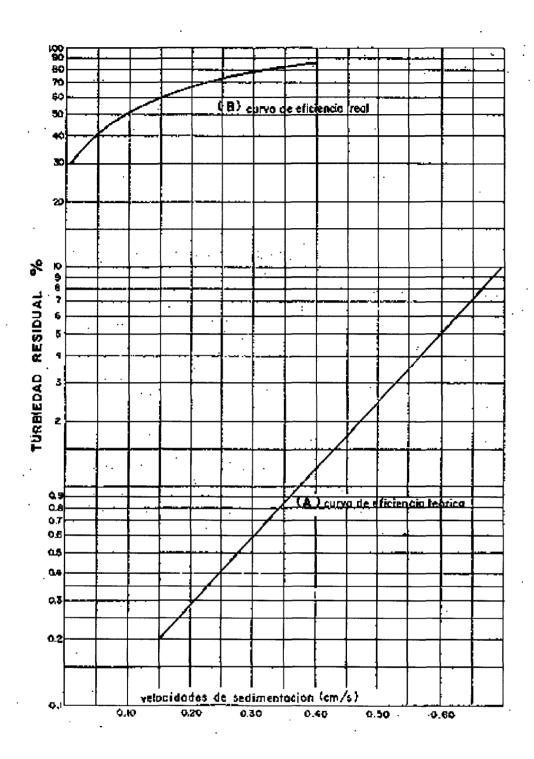


Figura 2.1 Influencia del tiempo de retención y características hidráulicas en la eficiencia de un sedimentador. (Pérez, 1992)

2.3 Uso de trazadores para determinar el tiempo de retención y características hidráulicas de un reactor

Los trazadores se utilizan para visualizar el comportamiento hidráulico de alguna determinada unidad. Se inyecta una concentración conocida y constante de un trazador durante un periodo de tiempo, dependiendo de lo que se quiera analizar, para posteriormente medir la concentración a la salida y así obtener una curva de concentración del trazador.

En el caso de una unidad bajo condiciones reales de funcionamiento (flujo no ideal, cortocircuitos, espacios muertos, corrientes de inercia, etc.), al medir y graficar la concentración de un trazador a la salida en función del tiempo, se obtiene diferentes curvas. Las diferentes curvas típicas de concentraciones de trazador a la salida para diferentes tipos de flujo se pueden apreciar en la Figura 2.2.

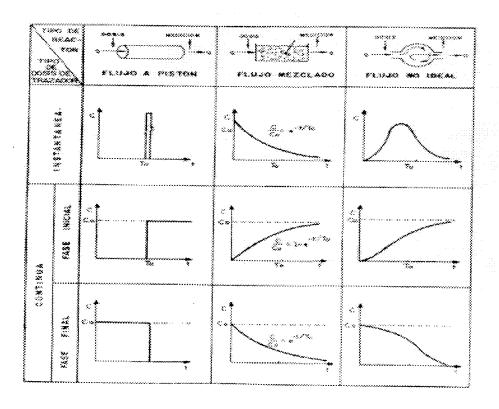


Figura 2.2 Curvas típicas de concentración de trazador en el efluente de unidades con diferentes características hidráulicas.

2.4 Análisis de las características de un sedimentador.

A continuación se presentaran las descripciones de las principales diferencias de deficiencias hidráulicas que se pueden presentar en los sedimentadores.

Cortocircuito: se presenta cuando parte del influente atraviesa la unidad con tanta rapidez que permanece dentro de ella sólo un instante o una fracción del tiempo de retención hidráulica. Se debe principalmente a errores en el diseño de las estructuras tanto de entrada como de salida que permiten al fluido tener una trayectoria directa hacia la salida de la unidad. La representación gráfica de un corto circuito se presenta en la Figura 2.3.

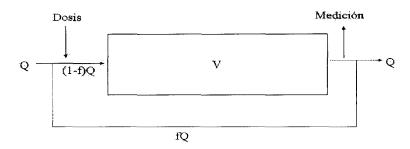


Figura 2.3 Modelo físico de flujo pistón con corto circuito.

Siendo TRH=V/Q, al tener un corto circuito se presenta tanto un volumen como un tiempo casi cero para f(Q) dentro de la unidad. Dando como resultado una disminución en la eficiencia de remoción.

En la Figura 2.4 se presenta un modelo de mezcla completa con un corto circuito, es básicamente lo mismo que el caso anterior, la disminución del tiempo de residencia hidráulico.

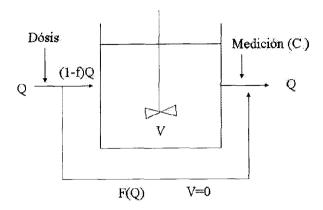


Figura 2.4 Modelo físico de mezcla completa con corto circuito.

En el ensayo de trazadores se puede detectar un corto circuito mediante la medición de la concentración del trazador el cual dará lecturas de concentración mayor al presentarse el corto circuito. La Figura 2.5 presenta gráficamente este caso.

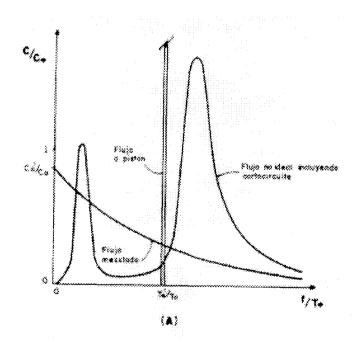


Figura 2.5 Influencia del corto circuito en unidad de flujo pistón.

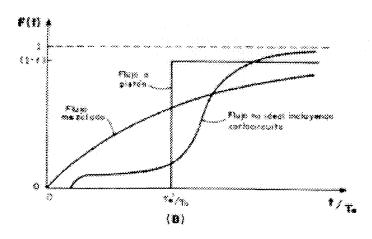


Figura 2.6 Influencia del corto circuito en unidad de mezcla completa.

Zona muerta: el flujo en ciertas zonas permanece en reposo o almacenado en un lugar cualquiera de la unidad, dando origen a una zona muerta que se define como la parte del volumen de la unidad donde la velocidad de traslación de la masa líquida es cero y/o el tiempo de retención llega a ser teóricamente infinito. En la Figura 2.7 se aprecia la presencia de un espacio muerto en un flujo pistón.

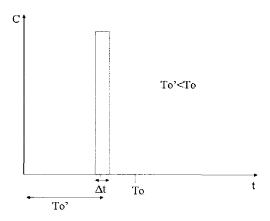


Figura 2.7 Flujo pistón con espacios muertos.

Corriente de inercia: provoca flujo turbulento generalmente homogéneo en toda la unidad, provocando una dilución continua del trazador, el cual llega a la salida de la unidad con un tiempo de retención pero con una concentración diferente en un lapso de tiempo mayor.

2.5 Ensayo con trazadores

Se utilizan para determinar la distribución del flujo en reactores paralelos y evaluar la eficiencia hidráulica y configuración de unidades de distribución, entrada y recolección de agua en reactores; definir los tiempos reales de retención y sus principales características: tipos de flujo, espacios muertos y cortocircuitos en unidades de tratamiento como mezcladores rápidos, floculadores, sedimentadores, así como en modelos de reactores en etapa de diseño para conocer su comportamiento hidráulico y deficiencias en forma previa a su construcción, lo cual es de enorme utilidad práctica.

2.6 Sustancias trazadoras

Se debe verificar la concentración de estas sustancias en el agua cruda y seleccionar aquellas que se presentan en concentraciones constantes o muy bajas. Es conveniente escoger como trazador aquella sustancia que no reaccione con los compuestos que existen en el agua, y que por lo tanto la concentración total que se determine a la salida, sea sensiblemente igual a la que se aplique a la entrada.

Las sustancias que se utilizan como trazadores se recomienda que sean: colorantes como fluoresceína o rodamina, iones como cloruros, especialmente de sodio o patasio, fluoruros o nitratos especialmente de sodio, elementos radiactivos como isótopos, ácidos: clorhídrico, benzóico y otras sustancias químicas: alizarim, sapirol, naptol.

2.7 Procedimiento para la prueba con trazadores

Para realizar las pruebas de trazadores se tienen básicamente dos opciones de inyección de la sustancia a utilizar.

2.7.1 Adición en forma instantánea

Se aplica una concentración a la entrada del floculador o sedimentador en un tiempo muy corto inferior a 1/30 del tiempo de retención, y un punto tal que se mezcle instantáneamente con la masa de agua que se piensa analizar, lo cual permitirá la determinación de las características hidráulicas existentes en la unidad.

2.7.2 Adición en forma continua.

Se aplica la concentración continuamente, por un tiempo no menor de tres veces el período de retención nominal y luego se interrumpe bruscamente la dosificación. Permite establecer comparaciones entre las curvas que se presentan a la entrada del trazador (cuando se inicia la dosificación) y al final (cuando se detiene la misma). Se obtiene una concentración de equilibrio.

La Figura 2.10 muestra el esquema de cómo se realiza un ensayo de trazadores. Se tiene una unidad a la cual se le agrega una sustancia trazadora de concentración conocida en el flujo de entrada, en la salida de la unidad se realiza la medición de la concentración del trazador.

Figura 2.8 Aplicación de un trazador.

2.8 Análisis

Para el análisis de la curva de tendencia de concentración del trazador se deben medir los siguientes parámetros principales: tiempos de aplicación del trazador, tiempo de retención hidráulico teórico de la unidad a estudiar, tiempo que corresponde a la máxima concentración del trazador presente la unidad, tiempo real de retención, así como las concentraciones inicial y máxima a la salida del trazador.

2.9 Limitaciones de la prueba con trazadores

Las pruebas de trazadores son muy útiles para conocer cómo se desplazan las diferentes masas de agua dentro de las unidades de tratamiento, floculadores o sedimentadores, pero los datos obtenidos se refieren solamente al momento en que se hace la prueba y no representa necesariamente el comportamiento en todas las condiciones.

Puede presentarse el caso de que un sedimentador con un mal comportamiento hidráulico (flujo pistón menor de 60%) produzca una remoción mayor de partículas, que otro con un buen funcionamiento hidráulico, pero con partículas que tienen velocidades de sedimentación menores.

Es importante recalcar que estos análisis no determinan las trayectorias de las partículas, del flujo o cómo se distribuye en el reactor, indicando el tiempo de permanencia pero no su trayectoria.

2. 10 Cálculo de cantidad de trazador

Dosificación instantánea:

Para el cálculo de la cantidad de trazador necesario para la dosificación instantánea se tiene la siguiente ecuación:

$$P = \frac{V * K * Co}{10^3 * I}$$

donde:

P = peso del trazador a añadir (Kg)

V = volumen del reactor (m³)

K = constante de corrección dependiendo del trazador

Co = concentración (mg/L)

I = grado de pureza del trazador

Dosificación continua:

Para el cálculo de trazador para la dosificación continua se tiene:

$$P = \frac{Co * Q * 3600 * K}{10^3 * I}$$

donde:

P = peso del trazador (Kg/h)

Co = concentración del trazador (mg/L)

I = grado de pureza del trazador (fracción de unidad)

2.11 Experiencia con el uso de trazadores

Debido a la importancia del uso de los trazadores para el estudio de la hidráulica de los sedimentadores, existen reportados en la bibliografía resultados de algunas de estas pruebas.

En el caso de este proyecto, se tuvieron como referencia los datos de los siguientes autores quienes también realizaron este tipo de pruebas.

Moursi et al (1995) utilizaron permanganato de potasio como trazador en sus experimentos de estudio de distribución de velocidades, para esto hicieron uso de cámaras fotográficas para tener seguimiento de los patrones de flujo. Los datos obtenidos a partir del permanganato fueron validados con el uso de rodamina y fluoresceína como trazadores alternos. Los resultados que obtuvieron de su estudio muestran la diferencia que existe en el comportamiento de los sedimentadores circulares y rectangulares, en su experimento se enfocaron a los primeros. Básicamente se muestra la influencia de la densidad del influente y como ésta repercute en las velocidades de corrientes de densidad que se desarrollan en la parte inferior del tanque.

Por otro lado, Quarani et al (1996) realizaron estudios de trazadores en un sedimentador circular, el trazador elegido fue, al igual que Moursi, permanganato de potasio, con el que analizaron las corrientes de densidad presentes en la unidad. En este experimento se mostró que el comportamiento que presentan los sedimentadores distan mucho del ideal con los que diseñan estas unidades, ya que en el comportamiento ideal no se contemplan los cortos circuitos, espacios muertos o corrientes de densidad las cuales provocan una disminución en la eficiencia de los sedimentadores. Se establece la importancia de llevar a cabo el escalamiento en base de los números adimensionales de Reynolds y Froude para el estudio del comportamiento hidráulico. La principal aportación de lo reportado por estos autores es la escala del sedimentador la cual es de 1:20.

Capítulo III

Materiales y Métodos

3.1 Materias primas

La construcción del sedimentador se basó en los análisis que se deseaban hacer para el estudio del comportamiento hidráulico y las variables que influyen directamente en la desviación de éste comportamiento con respecto a la idealidad.

La metodología que se llevó a cabo para dimensionar el modelo de sedimentador contó de varias etapas. Primeramente se verificó el rango de flujos que la bomba del laboratorio proporcionaba, a partir de estos datos se realizaron los cálculos de dimensiones, tiempos de retención hidráulico y cargas superficiales.

Los principales parámetros adimensionales para los clarificadores son los números de Reynolds, Froude y Weber. De éstos, el Número de Weber, que representa la fuerza inercial y la tensión superficial, es el menos importante ya que las escalas longitudinales de los efectos por tensión superficial son despreciables.

Los parámetros restantes, Números de Reynolds y Froude proporcionan la relación entre la viscosidad y las fuerzas inerciales y gravitacionales. Sería posible asumir similitud simultánea para ambos números si no se utilizara el mismo fluido en el modelo y en el prototipo. Ya que en ambos se tendría el mismo fluido (agua), sólo se puede cumplir con una de las similitudes. El tanque se divide en tres partes, la entrada, el tanque y la salida. En el tubo de entrada no hay superficie libre y la hidrodinámica se caracteriza por el Número de Reynolds ya que el flujo es turbulento. En el tanque, el flujo es dominado por las fuerzas inerciales y gravitacionales, por lo tanto, el parámetro que se utiliza para el escalamiento es el de Número Froude. En la salida, las fuerzas inerciales y gravitacionales también son dominantes haciendo el Número de Froude relevante para esta área también.

El escalamiento para el sedimentador se llevó a cabo teniendo como base el Número de Froude el cual contempla la relación entre la fuerza inercial y la fuerza gravitacional.

$$Fr = \frac{v^2}{g^*D} = \frac{inercial}{gravitacional}$$

donde:

v = velocidad del fluido [m/s]

 $g = constante de gravedad [m^2/s]$

D = diámetro de tubería [m]

El Número de Froude utilizado para el escalamiento fue similar al reportado por Taebi-Harandy et al (1996) el cual tiene un valor de 1.8405E-06.

El diseño final del sedimentador se definió estableciendo las condiciones idóneas para respetar el Fr antes mencionado.

El material utilizado para la construcción del reactor fue acrílico para permitir la visualización del fluido dentro de la unidad. El acrílico consta de un centímetro de espesor para poder soportar el volumen a contener y evitar posibles fugas. Consta de tres diferentes placas, dos semicírculos que cubren el perímetro total del sedimentador ya que no se contaba con una placa lo suficientemente larga para lograr el metro de diámetro requerido para la unidad. La otra parte es el fondo del sedimentador que tiene una ligera forma de cono por donde se purgaran los lodos. La canaleta también es del mismo acrílico y se encuentra pegada a la pared exterior del sedimentador, consta de 147 orificios de 1/16" de diámetro, en el Capítulo IV se describirá detalladamente la metodología utilizada para el criterio de orificios en la canaleta.

En el caso de la tubería, ésta fue diseñada en base al Número de Reynolds ya que éste involucra los principales factores que intervienen en el comportamiento de flujos, como los son las características fisicas del fluido:

$$Re = \frac{D^*V^*\rho}{\mu}$$

donde:

D = diámetro de tubería [m]

V = velocidad del fluido [m/s]

 ρ = densidad del fluido [Kg/m³]

 $\mu = viscosidad del fluido [Kg/m*s]$

Se construyeron dos rastras, una de aluminio delgado el cual fue soldado para dar la forma adecuada, la segunda rastra fue hecha de acrílico ya que este material es más ligero que el aluminio y representa menos esfuerzo para el motor, ya que al sumar el peso y la resistencia del agua el motor requiere de más potencia. Ambas rastras tienen las mismas dimensiones.

Se construyeron además dos mamparas cilíndricas de acrílico las cuales permitirán estudiar la influencia del tamaño de éstas en el comportamiento hidráulico. La más pequeña es de 10 cms de diámetro y 18 cms de largo, mientras que la grande es de 15 cms de diámetro y 15 cms de largo. Cada una con una ranura en la parte superior de manera que pudieran ser colocadas en el soporte.

El motor opera a una velocidad de 1/3 rpm. Está soportado a la altura precisa para hacer girar la rastra en la misma base que se utilizó para colocar las mamparas.

El sedimentador se colocó sobre una base tubular a la cual se le colocó una capa de hule en la parte superior para permitir que la unidad no presentara grietas al contener el agua encontrándose en contacto con la base y poder soportar el peso de la unidad de

una manera uniforme. La base sirvió además para nivelar lo mejor posible el sedimentador.

Las conexiones se hicieron con mangueras adecuadas al diámetro de cada uno de los tubos de acrílico en conexión al sedimentador de entrada y purga de lodos. Cada manguera tiene una abrazadera para evitar las fugas y asegurar la correcta colocación.

La bomba utilizada es peristáltica con un rango de flujos que van desde los 65 hasta los 813 ml/min.

Para medir la conductividad se utilizó el conductímetro Conductronic CL9 el cual da lecturas de conductividad y de temperatura, mientras que para medir densidades se usó un densímetro de rango 1.000 a 1.200 g/L.

Para la simulación de viento, se utilizó el ventilador de techo del laboratorio, el cual tiene un rango de 5 velocidades.

La tinta usada como trazador fue pintura acrílica en base agua Pinart en colores verde y azul.

Para las pruebas de medición se utilizó NaCl, sal de mesa común y para el caso del hipoclorito se usó Cloralex el cual es concentrado y tiene un 6% de cloro libre.

3.2 Métodos de análisis.

Para el análisis de trazadores se utilizó la tinta antes descrita para la observación de patrones de flujo, mientras que para el estudio de medición se utilizaron cloruro de sodio e hipoclorito de sodio como trazadores para la medición de la conductividad.

Se utilizó el método de inyección instantánea para las pruebas. Los cálculos realizados para determinar tanto la cantidad cloruro de sodio como trazador y el tiempo

de inyección durante las pruebas se hicieron de acuerdo a los reportados por Pérez (1992).

Las pruebas fueron realizadas con dos diferentes flujos, el primero para igualar el número de Froude reportado por Quarini (1996) y el segundo para obtener el escalamiento de la carga superficial. Con ambos flujos, a su vez, se realizaron pruebas con tres diferentes configuraciones para el sedimentador, la primera sin ningún tipo de estructura, es decir, sin la presencia de mampara y rastra, esto con la finalidad de analizar el comportamiento del fluido sin ningún tipo de equipo en la unidad. La segunda se realizó con la mampara de 10 cms de diámetro y la rastra y, por último, con la mampara de 15 cms de diámetro y la rastra. Todas estas variaciones fueron necesarias para determinar las variables que intervienen en el comportamiento hidráulico de los sedimentadores.

Capítulo IV

Análisis y discusión de resultados

4.1 Diseño y construcción del sedimentador.

Para realizar los experimentos, se cuenta con una bomba peristáltica que puede manejar flujos desde 65 hasta 813 ml/min. Con el objetivo de explorar la posibilidad de utilizar esta bomba, se obtuvieron las dimensiones que el sedimentador debería tener para cumplir con ciertos parámetros de diseño.

En el apéndice B se muestran los cálculos realizados para obtener el volumen, el diámetro, la profundidad y la carga hidráulica del sedimentador en función de los flujos que es posible manejar con la bomba existente y en función de valores típicos del tiempo de residencia hidráulico.

De acuerdo a la siguiente ecuación:

$$V = Q * TRH$$
 (1)

el volumen del sedimentador es función del flujo y del TRH. Con esta ecuación, se obtuvieron diferentes volúmenes del sedimentador variando el flujo en el rango de valores que la bomba puede manejar y suponiendo valores del TRH en el rango de valores típicos recomendados en la literatura (Qasim, 1985) que van de 90 a 240 min.

Una vez obtenido el volumen a diferentes flujos y a diferentes TRH, se obtuvo el diámetro y profundidad requeridos suponiendo una relación Altura:Diámetro de 1 a 4 y utilizando las siguientes ecuaciones:

$$2*R = D = 4*H$$

$$V = \pi * \left(\frac{D}{2}\right)^2 * \left(\frac{D}{4}\right)$$

$$D = \sqrt[3]{\frac{16*V}{\pi}}$$

$$A = \pi * \frac{D^2}{4} \qquad (2)$$

$$H = \left(\frac{D}{4}\right)$$

Estos valores de diámetro y profundidad se muestran también en el Apéndice B.

Finalmente el valor de la carga hidráulica se obtuvo para cada volumen calculado de acuerdo a la siguiente ecuación:

$$Vo = \frac{Q}{A} \qquad \textbf{(3)}$$

En el Apéndice C se muestran los cálculos necesarios para obtener rangos de operación a partir de una configuración fija.

Estos cálculos se basan en los resultados obtenidos del Apéndice B, se toman los volúmenes obtenidos del análisis de los flujos menos y mayor proporcionados por la bomba y en combinación con los TRH típicos reportados en la literatura. Para cada caso, se tomó un volumen el cual se mantuvo constante, se hizo un barrido de los flujos proporcionados por la bomba para así obtener los rangos de operación posibles con una configuración determinada. De los resultados de estos cálculos se obtienen nuevos rangos de TRH y Vo a partir de un volumen fijo y son comparados con los reportados por la literatura.

El Apéndice D muestra los cálculos realizados para obtener volumen, diámetro, profundidad y carga hidráulica en función del mismo rango flujos manejados con anterioridad. Se utilizaron también los criterios configuración típicos para sedimentadores reportados en la literatura, esto básicamente para mantener los resultados dentro del rango de valores reportados.

A partir de los cálculos anteriores, se obtiene el volumen del sedimentador y variando los flujos se tienen diferentes TRH, se obtienen diámetro y profundidad requeridos suponiendo una relación Altura:Diámetro de 1 a 10 y utilizando las siguientes ecuaciones:

$$2*R = D = 10*H$$

$$V = \pi*\left(\frac{D}{2}\right)^2*\left(\frac{D}{4}\right)$$

$$D = \sqrt[3]{\frac{40*V}{\pi}}$$

$$H = \frac{D}{10}$$

Finalmente el valor de la carga hidráulica se obtuvo para cada volumen calculado de acuerdo a las ecuaciones (2) y (3).

En el Apéndice E se muestran los cálculos teniendo volúmenes fijos resultantes de los cálculos anteriores. Se realizó la misma metodología seguida que en el Apéndice C, es decir, tomar un volumen fijo para determinado TRH y hacer un barrido con el rango de flujos proporcionado por la bomba para obtener diferentes valores de TRH y carga hidráulica para una configuración fija.

El Apéndice F muestra los cálculos realizados para obtener volumen, diámetro, profundidad y carga superficial en función de valores típicos del TRH.

Una vez obtenido del volumen a partir de la ecuación (1) se realizaron los cálculos para obtener los valores de diámetro y profundidad suponiendo una relación Diámetro:Altura de 1 a 7.5 y utilizando las siguientes ecuaciones:

$$2*R = D = 7.5*H$$

$$V = \pi * \left(\frac{D}{2}\right)^2 * \left(\frac{D}{7.5}\right)$$

$$D = \sqrt[3]{\frac{30*V}{\pi}}$$

$$H = \frac{D}{7.5}$$

El valor de la carga hidráulica se obtuvo para cada uno de los volúmenes resultantes de acuerdo a las ecuaciones (2) y (3).

En el Apéndice G se realiza un análisis detallado de los resultados de los Apéndices anteriores, el cual consiste en dimensionar la geometría del sedimentador a partir de volúmenes obtenidos con anterioridad. Para cada uno de los casos se calcula, a partir del Número de Froude reportado, la velocidad de ascenso por el tubo de entrada y se incluye también el cálculo del Número de Reynolds.

El Apéndice H muestra una comparación de datos obtenidos de sedimentadores en operación y algunas dimensiones propuestas para el modelo a operar. Se muestra el resultado de carga hidráulica y Número de Froude obtenidos para una determinada configuración, esto tiene como finalidad encontrar la configuración necesaria para igualar el Número de Froude reportado.

El Apéndice I muestra los resultados finales en los cuales se basó el diseño del sedimentador que se utilizó en la experimentación. Este diseño está en escala de 1 a 20 como lo reportó Quarini (1996) teniendo como base un sedimentador de 20 metros de diámetro y 3 metros de profundidad, las dimensiones finales fueron las requeridas para obtener un Número de Froude similar al de Quarini (1996) que tiene un valor de 1.8405E-06 y el obtenido con la configuración propuesta es de 1.7889E-06. Con estos resultados se decide tomar como dimensiones finales para el sedimentador un metro de diámetro y 15 cms de profundidad.

El diseño final del sedimentador se muestra en las Figuras 4.1 y 4.2.



Figura 4.2 Modelo final del sedimentador.

4.2 Instalación del sedimentador.

Para la instalación del sedimentador se requirió de una base tubular de 70 cms de alto. En la parte superior de la base se colocó una capa de hule grueso como protección, ya que con el peso del agua contenida en la unidad, el acrílico podría presentar grietas. Se niveló la base con unas gomas de hule en las esquinas, posteriormente se colocó el sedimentador sobre la base, se colocó la rastra y el soporte del motor para también nivelarlo.

Las diferentes mangueras fueron conectadas según su función en los tres diferentes tubos de acrílico, las de %" en la entrada y purga de lodos y la de H" en el efluente. El cálculo de los diámetros de tuberías se realizó en base al Re para el flujo que permitía mantener el Fr que se desea para los experimentos. Las conexiones necesarias tanto para la entrada como para la purga de lodos se observan en la Figura 4.3. La conexión de salida se aprecia en la Figura 4.4.

Figura 4.3 Conexiones de entrada y purga de lodos.

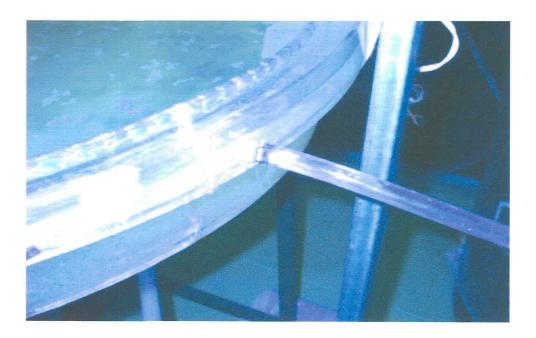


Figura 4.4 Conexión de salida del canal perimetral.

Para utilizar la bomba que se tenía disponible en el laboratorio, fue necesario realizar una ampliación de tubería ya que la manguera de la bomba era de 1/16" aproximadamente y se conectaría a una de ¾", a pesar de lo marcado de la ampliación, ésta funcionó perfectamente.

Se llenó el sedimentador de agua para la verificación de fugas y al ser encontradas algunas se sellaron con silicón y con pegamento.

Se instaló un termómetro para registrar la temperatura del agua del sedimentador, esto con el fin de detectar posibles problemas de corrientes de densidad debidas a cambios de temperatura del influente con respecto al agua dentro de la unidad, así mismo se registró la temperatura del laboratorio con un termómetro que ya estaba instalado en una de las paredes, esto con la finalidad de verificar si había influencia de la temperatura externa en la temperatura del agua dentro del tanque. La temperatura del agua de entrada también fue registrada. Cabe mencionar que a cada una de las muestras analizadas también se les midió y registró la temperatura.

Los vertedores circulares, originalmente tenían un diámetro de 1/16" siendo en total 147 lo que al principio ocasionó problemas al no verter agua todos los orificios hacia la canaleta, en parte este problema se debió a la tensión superficial del agua. Para terminar con este problema se decidió aumentar el diámetro a ¼" para así facilitar el paso del agua, al suponer que la cantidad de vertedores era superior al necesario, se procedió a tapar 76 vertedores y dejar 71. Por otro lado debe considerarse que la carga superficial con la que se operó el sedimentador no está dentro del rango típico de operabilidad recomendado debido a que se decidió respetar el escalamiento hidráulico y no el geométrico. La configuración se puede observar en la Figura 4.5.

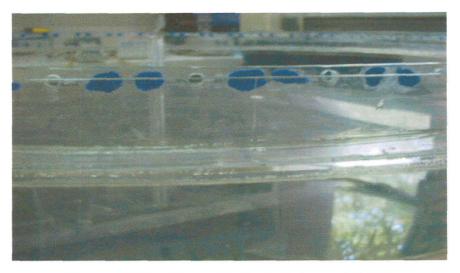


Figura 4.5 Configuración final de los vertedores.

Para obtener el diámetro final y el número necesario de vertedores fueron necesarios hacer cálculos de hidráulica para descarga a través de un tubo corto que es el caso del orificio del vertedor, a continuación se muestran dichos cálculos.

Se consideran las fórmulas:

$$V = Cv\sqrt{2*g*H}$$

donde:

V = velocidad a través del orificio [m/s]

Cv = coeficiente de velocidad

 $g = gravedad [m^2/s]$

H = altura desde la superficie del agua hasta la mitad del orificio [m]

$$Q = Cv * A\sqrt{2 * g * H}$$

donde:

 $Q = flujo [m^3/rnin]$

 $A = \text{área de orificio } [m^2]$

Cabe mencionar que la altura que se utilizó para estos cálculos fue la mitad del diámetro del orificio con la finalidad de obtener un valor aproximado sobre el cual poder formar una decisión. La figura 4.6 muestra la manera en que la altura fue tomada.

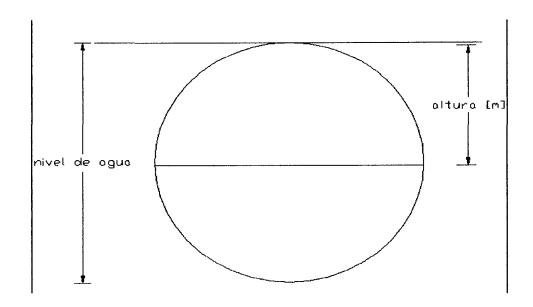


Figura 4.6 Altura tomada para el cálculo de flujo a través de orificios.

Para realizar éstos cálculos se requiere conocer el coeficiente de velocidad el cual va de la mano con la relación de espesor/diámetro del orificio (e/d). A continuación se presenta la Tabla 41. la cual muestra los valores para estas relaciones.

Tabla 4.1 Coeficientes de gasto para diferentes tipos de orificio de pared gruesa. (Sotelo, 1991)

e/d	<= 0.5	1	1.5	2.0	2.5	3	5
Cv	0.60	0.75	0.78	0.79	0.80	0.82	0.79
e/d	12	25	36	50	60	75	100
Cv	0.77	0.71	0.68	0.64	0.60	0.59	0.55

Los resultados de los cálculos realizados para los diferentes diámetros de los vertedores se muestran en la Tabla 4.2.

Tabla 4.2 Resultados para el cálculo de los vertedores.

Diámetro (mm)	Espesor (mm)	e/d	Cv	V (m/s)	Q (ml/min)
3.175	6	1.8897	0.78	0.1376	63
1.5878	6	3.77	0.82	0.1406	35.9704
6.35	6	0.9448	0.75	0.1871	112,028.2320

Los diámetros que se utilizaron para éstos cálculos fueron los equivalentes a las perforaciones hechas al acrílico para utilizarse como vertederos, es decir 1/16", 1/8" y 1/4". Los resultados obtenidos fueron analizados y comparados con el flujo que se deseaba tener sumando el número de vertedores, se optó por la configuración que ya se describió anteriormente.

En cuanto al tubo de entrada, originalmente este era un tubo de ¾" de diámetro y sin ninguna ranura. Se presentó el problema con la alimentación de que el desbordamiento del influente por el tubo no tenía una distribución uniforme ya que éste resbalaba por las paredes del tubo en lugar de hacer contacto con el agua dentro de la unidad. Debido a este problema, se decidió realizarle 6 ranuras laterales de iguales dimensiones, así como tapar con acrílico la parte superior del tubo para permitir que el influente tuviera una distribución radial. La configuración final se aprecia en la Figura 4.7

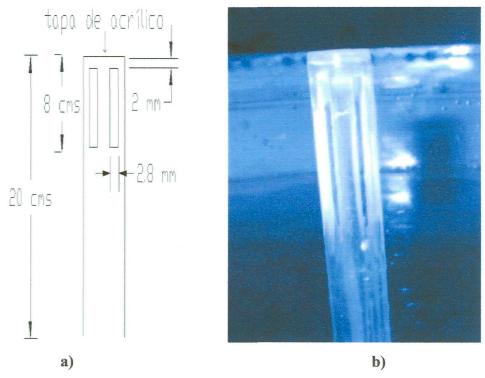


Figura 4.7 Configuración del tubo de entrada, a) Diseño, b) Modelo.

A la rastra también se le realizaron cambios de manera que ésta no interfiriera con el flujo de entrada ni causara turbulencias con el agua contenida en el sedimentador. Se le hizo un corte en la parte superior para permitir que el tubo de entrada vertiera el agua hacia el sedimentador. La rastra con la modificación se aprecia en la Figura 4.8, mientras que el diseño original de la rastra se puede apreciar en la Figura 4.9.

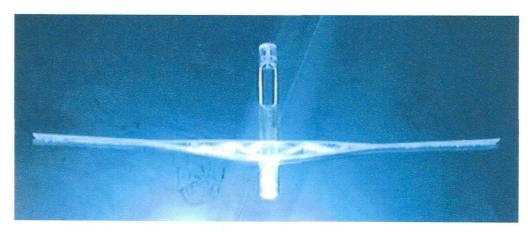
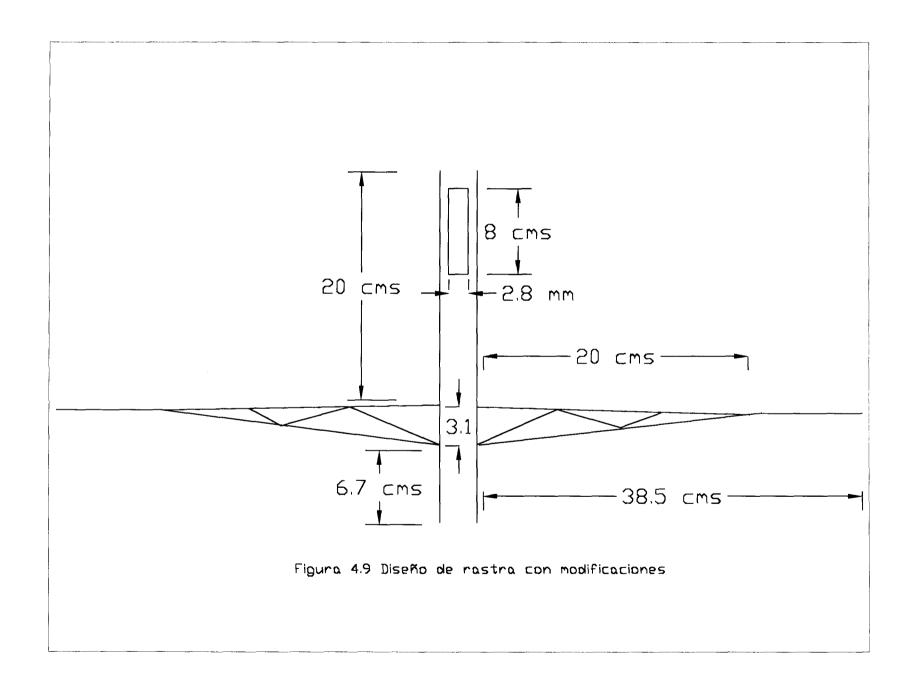



Figura 4.8 Rastra con modificación.

La configuración de la rastra junto con la mampara de 10 cms de diámetro utilizada para permitir la distribución de un flujo homogéneo para algunas de las pruebas se puede observar en la Figura 4.10.

Figura 4.10 Vista de la rastra con motor y mampara de 10 cms de diámetro.

La segunda mampara utilizada para las pruebas fue la de 15 cms de diámetro. La vista de la rastra junto con esta mampara se aprecia en la Figura 4.11.

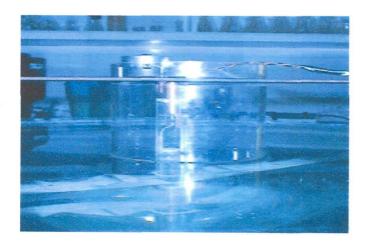


Figura 4.11 Rastra con mampara de 15 cms de diámetro.

Las figuras anteriores permiten observar la diferencia de la configuración de las mamparas. Fueron utilizadas dos de diferentes diámetros para establecer la diferencia del comportamiento hidráulico provocado por este tipo de estructuras.

Para tener la seguridad de que las sales utilizadas como trazador no estaban siendo acumuladas en el fondo de la unidad, se agregaron dos tomas de muestras, una en la parte del fondo y una más a la mitad del tanque. La forma en que se hicieron fue agregando dos pequeños tubos de acrílico junto con una manguera, esto con la finalidad de no crear turbulencia durante la toma de la muestra. Las tomas de muestras se pueden apreciar en la Figura 4.12.

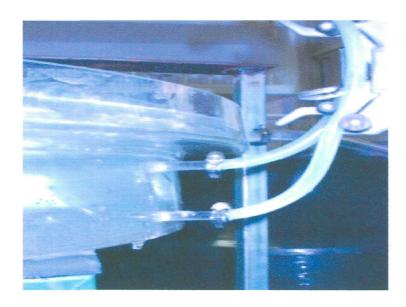


Figura 4.12 Localización de puertos para toma de muestras.

4.3 Elección del método de trazadores.

Para el estudio de trazadores se analizó el método reportado por Pérez (1992) y se decidió realizar la prueba de inyección instantánea para poder visualizar el comportamiento hidráulico presente en la unidad.

Para el estudio de patrón de flujo se decidió utilizar una tinta en base agua que nos permitiera visualizar un cambio de color para poder apreciar el comportamiento del fluido dentro de la unidad. Las razones de utilizar la tinta y no los colorantes típicos como la rodamina o la fluoresceína fueron básicamente la diferencia en costo y la facilidad de conseguirlos además de que no se iba a realizar alguna medición de su concentración.

Para la prueba de visualización, fue necesaria una cubeta donde se realizara la dilución de 10ml de tinta en 4 L de agua que era los necesarios para el tiempo de 1/30 del TRH teórico, esto para el primer flujo analizado el cual fue de 336.16 ml/min para un TRH de 5.8 horas. Para el caso del segundo flujo, 813 ml/min para un TRH teórico de 27 min fueron necesarios 1.5 L de agua y 3ml de tinta.

En el caso de la prueba de medición, se utilizó NaCl y fueron necesarios 12 g de NaCl para los mismos 4 L de agua. Los cálculos se presentan a continuación y fueron hechos en base a las ecuaciones reportadas en el Capítulo II:

TRH: 350.44 min

Inyección Instantánea $\frac{1}{30}$ 350.44 = 11.68 min \approx 12 min

Cantidad de NaCl

$$P = \frac{V*K*Co}{10^{3}*I} = \frac{(0.1178 \,\text{lm}^3)(1.85)(50)}{(10^{3})(0.90)} = 0.0121 KgNaCl \approx 12gNaCl$$

La k utilizada es la reportada para soluciones salinas.

Se realizó un cambio en el trazador debido a que, con el NaCl se tuvo una acumulación en el fondo del tanque lo cual no permitió obtener los resultados deseados. La acumulación de NaCl en el fondo permitió que la sal, por medio de difusión, tuviera una concentración menor en la superficie del sedimentador. El nuevo trazador fue hipoclorito de sodio el cual también permite obtener diferentes conductividades variando

las concentraciones. Una razón para cambiar el trazador fue utilizar uno con diferente densidad a la solución salina empleada con anterioridad y tener el registro de la influencia de la densidad en el comportamiento.

Cabe mencionar que los resultados anteriores para la cantidad de trazador utilizada para las diferentes pruebas a realizar, fueron el resultado de cálculos realizados con la metodología descrita en la sección de trazadores.

A continuación se presentan los resultados obtenidos de las diferentes pruebas realizadas tanto de visualización como de medición de conductividad para las diferentes configuraciones propuestas del sedimentador.

4.4 Pruebas de patrón de flujo (visualización).

4.4.1 Primera prueba de patrón de flujo.

La prueba se realizó sin la presencia de la rastra y sin la mampara. Posteriormente se realizaron pruebas con rastra y mamparas y los resultados de ambas pruebas permitirán establecer la influencia de estas dos estructuras en el comportamiento hidráulico del sedimentador.

Durante la prueba no se apreciaron espacios muertos, sin embargo, la tinta no salió por completo al término del TRH teórico. La cantidad de tinta utilizada fue de 120 ml disueltos en 4 L de agua lo cual resultó ser demasiada cantidad de tinta ya que el agua contenida en el sedimentador quedó completamente coloreada de la tinta de manera significativa. Debido a esto en las siguientes pruebas se utilizó una cantidad menor de tinta.

La temperatura registrada en el laboratorio fue de 26°C, mientras que la temperatura del agua dentro del sedimentador fue de 24°C.

Para esta prueba, el diámetro de los orificios de la canaleta fueron de 1/16", la cual fue la primera configuración de los vertedores. Se observó que la tensión superficial no permitía la salida del agua por todos los orificios hacia la canaleta.

Con esta primer prueba se tomaron ciertas condiciones para las siguientes análisis a realizar, tales como la cantidad de tinta y el tiempo en que tardaba la tinta en salir por primera vez, que fue de aproximadamente dos horas.

4.4.2 Segunda prueba de patrón de flujo.

Se utilizaron 30 ml de tinta en 4 L de agua.

Hora	Observación	
13:25	Inicio de la prueba, la rastra se puso a funcionar. Se comenzó a inyectar la tinta.	
13:37	Término de la inyección de la tinta.	
13:55	Se apagó el motor de la rastra.	
14:25	Se aprecia un espacio muerto en la zona al final de la rastra hasta la pared del	
	sedimentador. La tinta sólo ocupa el volumen de la trayectoria de la rastra.	
15:55	Todo el volumen del sedimentador se encuentra cubierto por la tinta.	
17:15	Se tiene presencia de tinta en la canaleta.	
19:40	Término del TRH teórico y la tinta no terminó de salir del sedimentador.	

Las temperaturas registradas fueron durante toda la prueba:

Laboratorio: 24°C

Agua sedimentador: 24°C

Exterior: 16°C

Esta vez la cantidad de trazador utilizada fue menor que en la prueba anterior, sin embargo también resultó ser excesiva, se llegó a esta conclusión debido a que el agua contenida en la unidad presentaba una gran acumulación de tinta después de varias horas.

El diámetro de los orificios de los vertedores fue de 1/16". En esta prueba, como en la anterior, se observó que el agua no salía por todos los orificios. Se observó que la rastra ocasionó interferencia con la tinta ya que ésta era arrastrada al paso de la rastra no permitiendo un comportamiento natural.

Desde la primera aparición de tinta en la canaleta se registra un TRH de 4 horas el cual es menor al teórico. Corto circuito ocasionado por la ausencia de mampara ya que la tinta se mantuvo en la superficie del agua y salió por los vertedores.

4.4.3 Tercera prueba de patrón de flujo.

Se utilizaron 10 ml de tinta en 4 L de agua.

Hora	Observación			
8:58	Inicio de la prueba. Comienza la inyección de la tinta y la rastra se encuentra			
	funcionando. Temperaturas: Laboratorio 23°C; Agua del sedimentador 20°C;			
	Exterior 18°C.			
9:10	Fin de la inyección de la tinta			
9:15	Se aprecia que la tinta tiende a desplazarse al lado izquierdo del sedimentador.			
9:30	La tinta ocupa toda la parte inferior del sedimentador. La rastra distribuyó la			
	tinta a lo largo de todo el fondo del sedimentador.			
12:00	Presencia de la tinta en la canaleta. La tinta está perfectamente distribuida en			
	todo el volumen del sedimentador. Temperaturas: Laboratorio 23°C; Agua en el			
	sedimentador 21°C.			
13:57	Se apagó el motor de la rastra ya que estaba caliente y la rastra se movía con			
	dificultad provocando turbulencia en el agua.			
16:45	La tinta se encuentra muy diluida y distribuida en todo el volumen del			
	sedimentador.			
18:10	La tinta no terminó de salir durante el TRH teórico, pero si se aprecia una			
	notable dilución. Término de la prueba para modificaciones al sedimentador.			

A partir de esta prueba ya se tuvo la nueva configuración de los orificios debido a los cálculos que se hicieron y que se mostraron con anterioridad. El diámetro de los orificios de la canaleta fue de ¼" y el número de orificios se redujo a 71.

Durante esta prueba, como en la anterior, la rastra influyó en la distribución de la tinta en el fondo del sedimentador, demostrando con esto que la velocidad de la rastra es un factor determinante en el comportamiento hidráulico.

Se redujo otra vez la cantidad de trazador utilizado para esta prueba, lo cual permitió una mejor visualización del comportamiento del influente, ya que la tinta tuvo una mejor distribución en el tanque.

Se pudo apreciar un espacio muerto significativo durante la prueba. El espacio muerto se puede apreciar en la siguiente Figura 4.13.

Figura 4.13 Espacio muerto.

El espacio muerto se debió a la influencia del ventilador de techo que se encontraba prendido para analizar la influencia del viento en el comportamiento hidráulico. El viento ocasionó el desplazamiento de la tinta hacia uno de los lados de la unidad ocasionando del lado contrario la presencia del espacio muerto que se muestra en la figura.

4.4.4 Cuarta prueba de patrón de flujo.

5 ml de tinta en 4 L de agua. Prueba realizada con rastra y mampara de 10cms de diámetro.

Hora	Observación
10:25	Inicio de la prueba. Comienza la inyección de la tinta. La rastra se
	encuentra funcionando.
10:37	Término de la inyección de la tinta.
10:55	La superficie del sedimentador perfectamente cubierta por la tinta.
11:43	Se apagó el motor de la rastra por haberse calentado y girar la
	rastra con mucha dificultad.
13:15	La rastra se pone a funcionar de nuevo.
14:20	Se vuelve a apagar el motor de la rastra.
16:20	Presencia de tinta de canaleta. Se observa una diferencia de fases
	entre la pintura y el agua. Se encuentra la pintura en la mitad
	superior del sedimentador. Se prende el motor de la rastra.
19:25	Presencia de tinta en la canaleta. El nivel de la pintura se
	encuentra a la altura de la canaleta, se aprecia la presencia de dos
	fases entre la pintura y el agua limpia.
9:23 (Siguiente día)	La tinta ha salido por completo quedando tan solo una parte
	sedimentada.

Las temperaturas registradas durante toda la prueba fueron:

Laboratorio: 24°C

Agua de sedimentador: 24°C

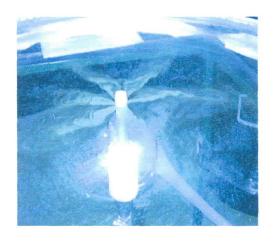
Exterior: 21°C

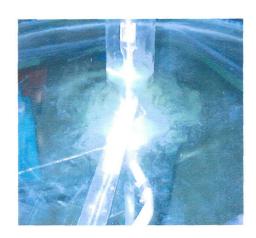
Se tiene la presencia de dos fases, es decir, la marcada presencia de la tinta en la parte del fondo del sedimentador, esto puede deberse al fenómeno de estratificación provocado por la diferencia de densidades entre el influente y el agua del tanque.

4.4.5 Quinta prueba de tinta.

5 ml de tinta en 4 L de agua. Prueba realizada con rastra y mampara de 10 cms de diámetro.

Hora	Observación
9:31	Inicio de la prueba. Comienza la inyección de la tinta, la rastra se encuentra
	funcionando. Temperaturas: Laboratorio 24°C; Agua del sedimentador 24°C.
9:41	Término de la inyección de la tinta.
9:43	La tinta, a diferencia de las pruebas anteriores, flotó a la superficie del
	sedimentador y se distribuyó uniformemente.
9:48	La tinta se encuentra en la superficie en su totalidad, hay presencia de tinta en la
	canaleta.
9:53	En una parte del sedimentador se puede a preciar que la tinta comienza a
	sedimentarse.
10:10	La tinta continua sedimentándose. Se aprecia un poco de tinta en la parte
	inferior del sedimentador. En la parte superior la tinta esta distribuida
	uniformemente.
10:25	En el volumen del sedimentador la tinta se encuentra perfectamente distribuida.
12:00	Temperaturas: Laboratorio 24°C; Agua del sedimentador 24°C; Exterior 27°C.
12:50	Temperaturas: Laboratorio 25°C; Agua del sedimentador 25°C; Exterior 28°C.
15:00	El TRH teórico se ha cumplido y la tinta no ha terminado de salir del
	sedimentador. Temperaturas: Laboratorio 25°C; Agua del sedimentador 25°C;
	Exterior 30°C
17:00	La tinta visiblemente diluida.
18:30	La tinta no ha terminado de salir del sedimentador. Se apagó el motor de la
	rastra.


En esta prueba, a diferencia de las anteriores, se pudo observar como la tinta sedimentaba después de permanecer un tiempo en la superficie.


4.4.6 Pruebas de visualización.

Se realizaron diferentes pruebas con tinta para poder observar el comportamiento hidráulico del sedimentador.

A continuación se presentan los resultados más importantes:

En el caso de las pruebas con flujo bajo se tuvo el resultado mostrado en la Figura 4.14.

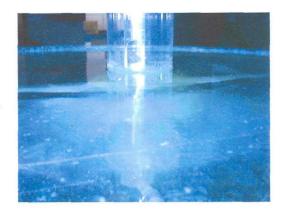

- a) Flujo bajo sin mampara
- b) Flujo bajo con mampara 10 cms de diámetro

Figura 4.14 Pruebas de flujo bajo.

En las figuras se aprecia la diferencia en el patrón de flujo provocado por la mampara, ya que esta permite que el flujo de entrada se pueda homogenizar para posteriormente poder tener un flujo radial adecuado, cosa que no sucede en el caso de no tenerla ya que, como se puede ver, el flujo se queda en la superficie y provoca cortos circuitos y no se tiene un flujo radial homogéneo. Con todo esto la eficiencia del sedimentador se ve reducida ya que, al disminuirse el volumen efectivo el tiempo de retención también disminuye de manera significativa.

Para el caso de flujo alto se tienen los resultados mostrados en las Figuras 4.15 y 4.16.

a) Flujo alto sin mampara

b) Flujo Alto con mampara 10 cms de diámetro

Figura 4.15 Pruebas de flujo alto.

El comportamiento es el mismo que con el flujo bajo. Cuando se tiene la ausencia de la mampara se puede observar que no hay un flujo radial homogéneo. En el caso que no se cuenta con la mampara se aprecia muy bien la manera en que la tinta sigue una trayectoria por la superficie del agua y va directamente hacia los orificios de salida que van a la canaleta. En el caso de la mampara, se tiene una mejor homogenización del flujo, la tinta desciende y con esto se reducen los cortos circuitos.

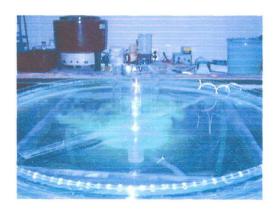


Figura 4.16 Flujo alto con mampara de 15 cms de diámetro

Comparando los casos de pruebas con las dos diferentes mamparas, se observa en la Figura 4.16 b) que utilizando la mampara de 10 cms de diámetro, la distribución de la tinta logra un flujo radial homogéneo. En el caso de la mampara de 15 cms se observa que el flujo no logra ser del todo homogéneo, ya que la tinta tiene más espacio para conservar su patrón antes de tocar la pared de la mampara y poder así homogenizarse.

Se analizó la influencia del viento, en este caso utilizando el ventilador de techo del laboratorio y los resultados se pueden observar en la Figura 4.17.

b) Prueba con ventilador

Figura 4.17 Análisis de la influencia del viento.

En esta figura se puede apreciar el resultado de las pruebas realizadas para verificar la influencia del viento en el comportamiento hidráulico del sedimentador, ya que en pruebas anteriores se tenía la suposición de que los espacios muertos eran causados por viento.

Se aprecia que mientras el ventilador se encuentra pagado, la tinta se distribuye de forma uniforme en todo el volumen del sedimentador, siendo el caso contrario cuando el ventilador esta operando, el viento actúa como agente desplazante de las partículas tendiendo a arrastrarlas hacia un solo lado creando así espacios muertos en la unidad.

4.5 Pruebas de patrón de flujo (medición).

4.5.1 Inyección Instantánea.

Como se describió anteriormente, esta prueba se realizó mediante la inyección de 12 g de NaCl diluidos en 4 L de agua durante un periodo de 12 min. Los resultados se presentan a continuación. Todas las gráficas están representadas en forma de la Curva E, la cual muestra el cambio de la conductividad registrada a través del tiempo. En el eje de las Y, C/Co, muestra la diferencia de conductividades, es decir, la tomada menos la inicial, mientras que en el eje de las X, t/to, es el cociente del tiempo de lectura entre el TRH teórico.

En el análisis de NaCl como trazador se obtuvieron diversos resultados pero a continuación se presentarán las pruebas más significativas por su aportación a este proyecto. En el apéndice J se muestran todos los resultados de las pruebas realizadas con la solución salina. La Figura 4.18 representa resultados más significativos de las pruebas con NaCl a flujo bajo y sin mampara, mientras que la Figura 4.19 representa las pruebas de flujo bajo con mampara de 10 cms.

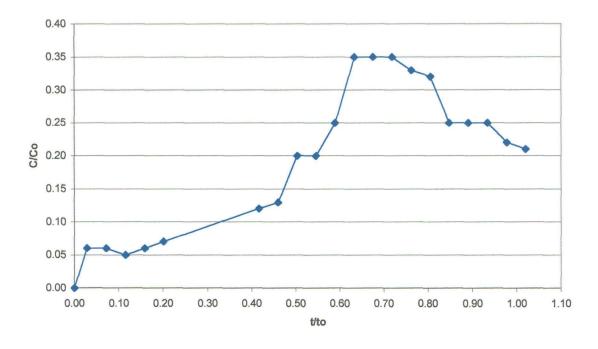


Figura 4.18 Prueba de bajo flujo sin mampara.

Se observa como el trazador comienza su salida aproximadamente al 65% del TRH teórico. El comportamiento de la curva se asemeja al de una distribución normal, lo cual representa un incremento de la conductividad hasta un punto máximo y luego el descenso de ésta. No se muestra la presencia de un corto circuito significativo, es decir, el trazador no sale repentinamente al poco tiempo de ser inyectado.

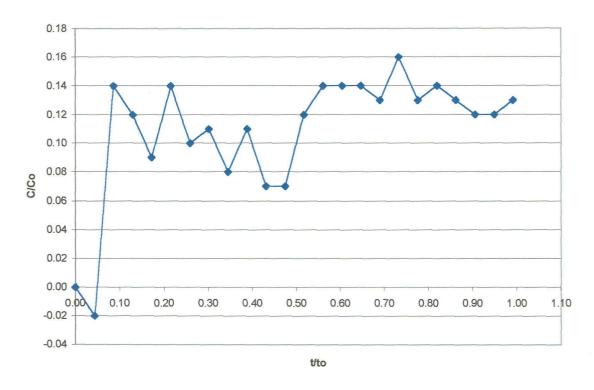


Figura 4.19 Pruebas de flujo bajo con mampara de 10 cms.

Los resultados obtenidos de esta prueba permiten observar un pico en la conductividad a la décima parte del TRH teórico, es decir, hay presencia de un corto circuito. Posteriormente se presenta una variabilidad en las conductividades hasta que estas se mantienen aproximadamente constantes, los picos máximos representan la salida del trazador.

Ambas pruebas reflejan una posible acumulación de la sal en el fondo del tanque ya que la conductividad después de cierto tiempo se mantiene constante y no desciende

como es de esperarse. Esto se debe a la difusión presente debido a la diferencia de concentraciones existente entre el influente y el agua contenida en el tanque, el fluido con mayor concentración se mantiene en el fondo del tanque y solo una parte se difunde hacia el resto del fluido del tanque con menor concentración. Este fenómeno también es conocido como estratificación.

Con la finalidad de corroborar o desmentir la aseveración anterior, se hace una prueba diferente esta vez teniendo monitoreo tanto del fondo del tanque así como de su superficie. Los resultados obtenidos se muestran a continuación en la Figura 4.20.

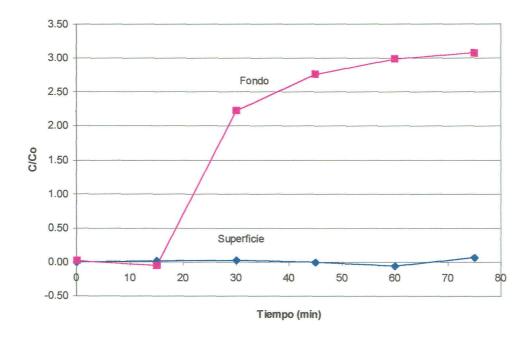


Figura 4.20 Medición de conductividades en superficie y fondo del tanque a flujo bajo.

Se aprecia con toda claridad la acumulación de la sal en el fondo del sedimentador lo que se ve reflejado en la alta conductividad que ahí se registra con el paso del tiempo, mientras que en la superficie del tanque ésta se mantiene aproximadamente constante. Este comportamiento se debió a la notoria diferencia de

densidades del líquido dentro de la unidad con respecto a la del trazador inyectado en el fondo del tanque. La densidad fue de 1.004 g/L, mientras que la del agua contenida en el tanque fue de 1.000 g/L, por lo que se tuvo la acumulación de sal en el fondo del tanque. Esta prueba se realizó con el primer flujo de estudio, es decir, los 336.16 ml/min.

Para tener la seguridad de que el problema de la acumulación no era ocasionado por el flujo, se procedió a aumentar éste hasta 813 ml/min que era el flujo más alto que la bomba podía proporcionar y se procedió a seguir la prueba. Los resultados se muestran en la Figura 4.21.

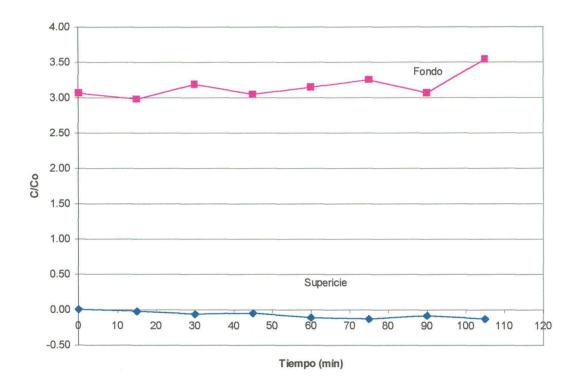


Figura 4.21 Medición de conductividades en superficie y fondo a flujo alto.

Con estos resultados obtenidos, es claro que el flujo no interviene en la acumulación de la sal en el fondo del sedimentador, y que la repercusión de la densidad

es un factor determinante en la acumulación de sal en el fondo del tanque, por lo cual se decidió cambiar de trazador a hipoclorito de sodio para las siguientes pruebas.

Las pruebas realizadas con hipoclorito permiten apreciar el comportamiento hidráulico del sedimentador tanto con la mampara y la rastra como sin estos accesorios, esto con el fin de establecer los patrones de cada uno de los comportamientos. Cabe mencionar que a partir de estas pruebas se registró la densidad del influente para determinar si era un factor determinante o no.

De nuevo, se muestran los resultados más significativos de las pruebas con hipoclorito, mientras que en el Apéndice K se muestran todas las pruebas realizadas. Para la prueba de hipoclorito con el flujo de 336 ml/min y sin mampara, los resultados se tienen en la Figura 4.22.

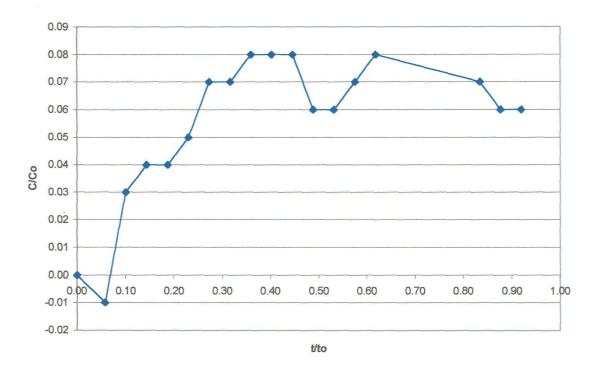


Figura 4.22 Prueba de flujo bajo sin mampara con hipoclorito.

Para estas pruebas ya se tienen dos tomas de muestras más para poder monitorear el comportamiento del sedimentador a diferentes profundidades y con esto poder descartar la acumulación de trazador en el fondo. En las gráficas solo se presentan los resultados de las conductividades en la superficie.

En la Figura 4.23 se aprecia una curva de conductividades mejor definida, sin embargo, no se observa que la conductividad descienda hasta su valor original. La densidad registrada del influente fue de 1 g/L, la cual es la misma que la del agua en el tanque, por lo que se descarta una posible comente de densidad.

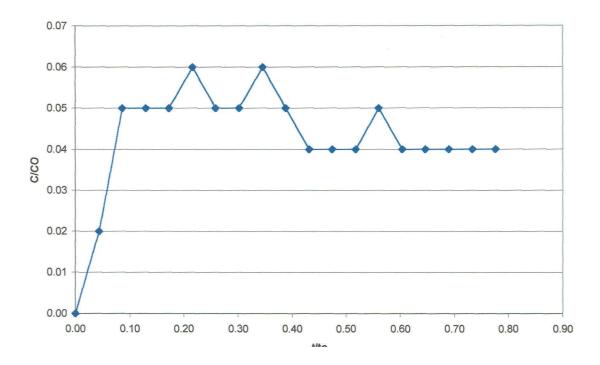


Figura 4.23 Prueba a flujo alto sin mampara con hipoclorito.

La prueba se realizó sin la presencia de la rastra, por lo que no se presenta una mezcla en la parte inferior del tanque debido a la velocidad de la rastra. La densidad registrada del influente fue de 1.002 g/L solamente 0.002 g/L por arriba de la del agua en el tanque. Los picos representan la salida de la conductividad más alta por lo que se concluye que existen disparidades en la salida del trazador.

La prueba mostrada en la Figura 4.24 fue realizada con la rastra y la mampara, se puede observar que se presentan algunas variaciones en la conductividad del fondo, esto se puede deber a algunas turbulencias presentadas por la presencia de la rastra. En general el comportamiento es parecido al descrito en la prueba anterior. La densidad en este caso fue de 1 g/L



Figura 4.24 Prueba con rastra y mampara de 10 cms de diámetro a alto flujo.

La conductividad muestra un comportamiento constante a la salida, salvo en los picos que demuestran una conductividad mayor a la salida. El primer pico se da al 30% del TRH teórico lo cual nos representa un corto circuito, de ahí en adelante, como ya se mencionó, el comportamiento es del trazador se mantiene homogéneo.

Cabe mencionar que para todas las pruebas se tuvo un monitoreo de la densidad del trazador para visualizar comentes de densidad causadas por la diferencia de densidades en el fondo del tanque. Todos estos resultados están en el Apéndice que ya se mencionó

con anterioridad para las pruebas con hipoclorito. Así mismo, en esas tablas se puede apreciar con detalle el monitoreo de la temperatura de cada una de las muestras y del influente.

Para cada una de las muestras se le registró la conductividad y la temperatura con un conductímetro. En cuanto a la toma de densidades del agua en el tanque y del trazador, se realizó con la colocación de una muestra de 500 ml de muestra dentro de una probeta para poder medir con el densímetro la densidad del fluido.

El rango de densidades que se registraron para los trazadores osciló entre 0.999 y 1.004 g/L, mientras que la del agua se mantuvo constante en 1.000 g/L.

En las pruebas realizadas con hipoclorito de sodio como trazador al igual que el NaCL, se registró una acumulación de trazador en el fondo del tanque mientras que en la superficie, la conductividad en determinado momento se mantenía constante. El fenómeno es el mismo que en el caso del primer trazador, la densidad influye para provocar el fenómeno de estratificación, el cual provoca una acumulación de sal en el fondo del tanque.

Capítulo V

Conclusiones y Recomendaciones

5.1 Conclusiones.

- El uso de modelos a escala de sedimentadores es de gran utilidad para el estudio de las diferencias del comportamiento real con respecto del teórico.
- El escalamiento para el estudio de los factores hidráulicos depende de las similitudes de los números adimensionales de Reynolds y Froude los cuales describen los comportamientos de la tubería de entrada y el tanque respectivamente.
- La elección del trazador es muy importante así como la dosis de éste que se utilizará. En el caso del uso de sales, se debe cuidar que la solución a inyectar no sea sobresaturada ya que dentro del sedimentador puede presentarse una precipitación de la sal la cual nos puede causar interferencia en las mediciones.
- Se observó que al utilizar sales como trazadores, la diferencia de densidades, del trazador con respecto al líquido en la unidad, ocasiona el fenómeno de estratificación.
- Un factor determinante en el comportamiento del fluido a la entrada es la configuración del tubo de entrada, se presenta una distribución más uniforme cuando el tubo tiene ranuras perimetrales en la parte superior de éste permitiendo que la distribución del flujo sea homogéneo radial.
- Se corroboró lo reportado en la literatura: Pequeñas variaciones en la densidad, un rango de 0.0006 g/L en el caso de este proyecto, del fluido de entrada con respecto al contenido del sedimentador pueden ocasionar corrientes de densidad las cuales influyen en el rendimiento de estas unidades ocasionando una acumulación del contenido del influente en el fondo del tanque.
- Otro aspecto que se comprobó fue lo referente a los cortos circuitos, cuando se presentan en estas unidades ocasionan que los TRH no sean los teóricos, en la mayoría de los casos, la presencia de este problema causa la disminución del TRH

- en la operación. Los cortos circuitos son ocasionados por la ausencia de mamparas que distribuyan el flujo uniformemente.
- La presencia de la rastra puede ocasionar turbulencias y espacios muertos debido a la velocidad de arrastre. La velocidad con la que operó la rastra en este caso fue de 1/3 de rpm, por lo cual la velocidad debe ser menor para no presentar este tipo de problemas de operación.
- En los sedimentadores circulares con entradas centrales, es importante tener mamparas para obtener un flujo radial homogéneo y así evitar la presencia de cortos circuitos y en algunos casos espacios muertos.
- El factor del viento es muy importante ya que causa espacios muertos reduciendo así la eficiencia del sedimentador. El viento provoca el arrastre de las partículas a sedimentar hacia un solo lado del sedimentador provocando así el descenso de la eficiencia de la unidad.

5.2 Recomendaciones.

- Resulta de gran importancia el monitoreo tanto de las temperaturas así como de las densidades de los fluidos involucrados en el sedimentador en diferentes partes del mismo.
- Es importante el realizar estudios comparativos del comportamiento de las unidades dependiendo de las estructuras que estas contengan, como por ejemplo, rastras, desnatadores, mamparas, etc., es decir, realizar estudios sin estos aditamentos y posteriormente con ellos para medir el grado de influencia y las repercuciones en la operación que pudieran tener.
- La velocidad de la rastra debe ser la adecuada para no provocar deficiencias hidráulicas dentro del sedimentador. El rango de velocidades recomendada es de 0.02 a 0.05 rpm.
- Se debe tener en cuenta el factor de estratificación el cual está relacionado con la temperatura, densidad y salinidad del trazador.
- Es importante, para futuros estudios, tener en cuenta para el escalamiento las dimensiones de las mamparas utilizadas en sedimentadores reales, ya que por limitaciones en el material disponible esto no fue posible.
- Para evitar problemas en la operación de modelos a escala, se debe enfocar en las variables que se quieren analizar, ya que no es posible hacer un escalamiento geométrico respetando los valores típicos recomendados para estas unidades.
- Se recomienda tener en cuenta el escalamiento de los diferentes componentes de los sedimentadores, tales como las mamparas, ya que para este estudio no fue posible debido a las limitaciones en material disponible.

BIBLIOGRAFIA

Anderson, J. A 1996. Hydraulic design of peripheral channels for circular tanks. Water Research. Volume 30, pp 486-488.

Anónimo. Tratamiento primario: Sedimentación simple.

http://www.gob.gba.gov.ar/ente/yolumenes del plan/vol3/tomo3 27/v3 atec 327 1.htm

Anónimo. Datos de pruebas de trazadores.

http://www.cepis.org.pc/eswww/fulltext/repind57/sri/sritab05.html

BioGreen (Nfld) Ltd. Secondary wastewater treatment.

http://www.enviroaccess.ca/fiches 3/FA3-01-96a.html

Bird, R. B., Stewart, W. E., Lightfoot, E. N. 1993. Fenómenos de Transporte. John Wiley & Sons, Inc. México.

Bye, Christopher M., Dold, Peter L. Nov/Dec 1999. Evaluation of correlation for zone settling velocity parameters based on sludge volume index-type measures and consequences in settling tank design. Water Environmental Research, Volume 71, Issue 7, pp 1333-1344.

Camp, Thomas R. 1945. Sedimentation and the design of settling tanks. American Society of Civil Engineers Transactions, pp 895-954.

Cashion, Bryan S. Keinath Thomas M. November 1983. Influence of three factor on clarification in the activated sludge process. Journal WPCF, Volume 55, Number 11, pp 1331-1337.

Chapman, David T. December 1983. The influence of process variables on secondary clarification. Journal WPCF, Volume 55, Number 12, pp 1425-1434.

Emmanuel, Evens. La sedimentación laminar en el tratamiento de las aguas negras. http://www.refer.org/haiti_ct/rec/crea/high.html

Esler, John. Sep 1998. Ensuring optimum clarifier performance. The American City & Country, Volume 113, Issue 10, pp 48-49.

Hasselblad, Serena and Xu, Shulan. Nov/Dec 1998. Solids separation parameters for secondary clarifiers. Water Environmental Research, Volume 70, Issue 7, pp 1290-1296.

Humphres, Hubert W July 1975. Hydraulic model study of a settling basin. Water Technology, pp 367-372.

Joo-Hwa Tay, Andrex, Heinke Gary W. March 1938. Velocity and suspended solids distribution in settling tanks. Journal WPCF, Volume 55, Number 3, pp 261-269.

Kasnavia, Torez, De Vu, Sabatini, David A. May/Jun 1999. Fluorescent dye and media propeties affecting sorption and tracer selection. Ground Water, Volume 37, Issue 3, pp 376-381.

Krebs, P. 1991. The hydraulics of final settling tanks. Water Science Technology, volume 23, pp 1037-1046.

Krebs, Peter, Vischer, Daniel, and Gujer, Willi. August 1995. Inlet-structure design for final clarifiers. Journal of environmental engineering. Pp 558-564.

McKay, L. D., Sanford, W. E. and Strong, J. M. Feb/Jan 2000. Field-scale migration of colloidal tracers in a fracturated sapolite. Ground Water, Volume 38, Issue 1, pp 139-147.

Metcalf and Eddy. 1990. Ingeniería de aguas residuales. Tratamiento, vertido y reutilización. McGraw Hill.

Moursi, Amal M., McCorquodale, John A., El-Sebakhy, Ibrahim S. Dec. 1995. Experimental studies of heavy radial density currents. Journal of Environmental Engineering, pp 920-929,

Qasim, Syder R. 1985. Wastewater treatment plants. Planning, design and operation. CBS College Publishing. USA.

Quarini, G., Innes, H., Smith, M. and Wise D. 1996. Hydrodynamic modelling of sedimentation tanks. Proc. Instn. Mech. Eng. Volume 210, pp 83-91.

Raigger, Glan T Jan/Feb 1995. Development of refined clarifier operating diagrams using an updated settling characteristics database. Water Environmental Research, Volume 67, Number 1, pp 95-100.

Reynolds, Tom D. 1982. Unit operation and processes in environmental engineering. Texas A&M University. PWS Publishing Company. USA.

Shurtleff, Robert and Porteous, Jim. May 1999. Circular primary clarifiers—The case for all 304 stainless steel. Water Engineering & Management, Volume 146, Issue 5, pp 26-28.

Sotelo Avila, Gilberto. 1991. Hidráulica general Volumen 1 Fundamentos. Noriega Limusa. México.

Taebi-Harandy, Amir, Schroeder, Edward. December 1995. Analysis of structural features on performance of secondary clarifiers. Jornal of Environmental Engineering, pp 911-919.

Takacs, I., Patry, G. G. and Nolasco, D. 1991. A dynamic model of the clarification-thickening process. Water Research, Volume 25, Number 10, pp 1263-1271.

Tchobanoglous and Crites. 2000. Small and decentralized wastewater management Systems.

Weber, W. 1972. Physicochemical processes for water quality control. John wide and Sons. U.S.A.

White, Frank M. 1999. Fluid Mechanics. McGraw Hill. USA.

Wouda, T. W. M., Rietema K. and Ottengraf S. P. P. 1997. Continuous sedimentation theory, effects of density gradients and velocity profiles on sedimentation efficiency. Chemical Engineering Science, Vol. 32, pp351-358.

Zhong J., McCorquodale, John, Zhou, Siping, Vitasovic, Zdenko May/June 1996. A dynamic solids inventory model for activated sludge systems. Water Environmental Research, Volume 68, Number 3, pp 329-337.

APÉNDICE

A

Criterios de diseño de sedimentadores circulares de acuerdo a diferentes autores.

Tabla A.1 Datos de diseño para sedimentadores primarios. (Metcalf, 1990)

Características	Valo)r
	Rango	Típico
Decantación primaria de tratamiento		
secundario:		
Tiempo de retención, h	1.5-2.5	2.0
Carga superficial m ³ /m ² *d		
A flujo promedio	800-1,200	
A flujo pico	2,000-3,000	2,500
Sedimentación primaria con adición del lodo		
activado en exceso		
Tiempo de retención hidráulico, h	1.5–2.5	2.0
Carga superficial m ³ /m ² *d		
A flujo promedio	600-800	
A flujo pico	1,200-1,700	1,500
Carga sobre vertedero, m ³ /m ² *d	10,000–40,000	20,000

Tabla A.2 Dimensiones de sedimentadores circulares. (Metcalf, 1990)

Rango	Típico
3-4.5	2.6
3-60	12-45
6.25-16	8
0.02-0.05	0.03
	3-4.5 3-60 6.25-16

Tabla A.3 Dimensiones de Sedimentadores Circulares. (Qasim, 1985)

Clarificador Circular	Rango	Típico
Diámetro (m)	3-60	10-40
Profundidad (m)	3-6	4

Tabla A.4 Cargas superficiales y profundidades para Clarificadores Primarios. (Reynolds, 1982)

	Carga superficial (m³/día*m²)					
Tipo de tratamiento	Promedio	Pico	Profundidad			
			(m)			
Sedimentación primaria seguida	32.59-48.89	48.89-122.23	3.08-3.65			
de tratamiento secundario						
Sedimentación primaria con	24.44-32.59	48.89-61.11	3.65-4.57			
lodos activados						

Tabla A.5 Criterios de diseño para cargas superficiales. (Qasim, 1985)

Condición	Rango	Típico
	(m³/m²*día)	(m^3/m^2*dia)
Sedimentación primaria antecedente a un tratamiento		
secundario		
Flujo promedio	30-50	40
Flujo pico	70-130	100
Sedimentación primaria con recirculación de lodo		
Flujo promedio	25-35	30
Flujo pico	45-80	60

Tabla A.6 Información típica para tanques de sedimentación circulares utilizados para tratamiento primario y secundario.

(Tchobanoglous, 2000)

***************************************	***************************************	Prim	Primario		dario
Sedimentador	Unidades	Rango	Típico	Rango	Típico
Cicular					
Profundidad	M	3.04-4.87	4.26	3.04-6.70	5.48
Diámetro	M	3.04-60.96	12.19-45	3.04-60.96	12.19-45
Pendiente del fondo	mm/m	19.05-50.8	25.4	19.05-50.8	25.4
Velocidad de la	Rpm	0.02-0.05	0.03	0.02-0.05	0.03
rastra					

Tabla A.7 Tiempos de Retención. (Qasim, 1985).

Carga	Tiempo de retención (h)							
Superficial	2.0	2.5	3.0	3.5	4.0			
(m^3/m^2*d)	Profundidad	Profundidad	Profundidad	Profundidad	Profundidad			
30	1.6	2.0	2.4	2.8	3.2			
40	1.2	1.5	1.8	2.1	2.4			
50	1.0	1.2	1.4	1.7	1.9			
60	0.8	1.0	1.2	1.4	1.6			
70	0.7	0.9	1.0	1.2	1.4			
80	0.6	0.8	0.9	1.1	1.2			

Tabla A.8 Criterios recomendados para sedimentadores secundarios para tratamiento de aguas residuales municipales. (Reynolds, 1982)

Tipo de	Carga sı	ıperficial	Carga de s	ólidos	Profundidad	
tratamiento	$(m^3/día*m^2)$		(m³/día*m²)		(ft)	
	Promedio	Pico	Promedio	Pico		
Lodos activados	16.29-32.59	40.74-81.49	8.14-12.22	20.37	3.65-4.57	
(excepto						
aereación						
extendida)						
Lodos activados	8.14-16.29	32.59	8.14-12.22	20.37	3.65-4.57	
en aereación						
extendida						
Lodos activados,	16.29-32.59	40.74-81.49	10.18-14.26	20.37	3.65-4.57	
oxígeno puro						
Filtros	16.29-24.47	40.74-81.49	-	-	3.04-3.65	
percoladores						

APÉNDICE

B

Dimensiones para sedimentador

Relación 4:1

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm^2)	(cm)	_(cm)	(m³/m²*día)
65.0000	90	5850.0000	754.8150	31.0010	7.7502	1.24004
150.6740	90	13560.6600	1322.0783	41.0283	10.2571	1.64113
237.8121	90	21403.0890	1792.2046	47.7693	11.9423	1.91077
336.1680	90	30255.1200	2257,3689	53.6113	13.4028	2.14445
425.7734	90	38319.6060	2642.5141	58.0048	14.5012	2.32019
502,9490	90	45265.4100	2952.8922	61.3167	15.3292	2.45267
618.6400	90	55677.6000	3389.9266	65.6977	16.4244	2.62791
692.3000	90	62307.0000	3653.9381	68.2081	17.0520	2.72832
734.2400	90	66081.6000	3800.0588	69.5585	17.3896	2.78234
755.1487	90	67963.3830	3871.8627	70.2126	17.5531	2.80850
813.0081	90	73170.7290	4067.1939	71.9619	17.9905	2.87848

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	120	7800.0000	914.3933	34.1210	8.5302	0.88214
150.6740	120	18080.8800	1601.5838	45.1575	11.2894	1.35473
237.8121	120	28537.4520	2171.1013	52.5769	13.1442	1.57731
336.1680	120	40340.1600	2734.6077	59.0069	14.7517	1.77021
425.7734	120	51092.8080	3201.1778	63.8425	15.9606	1.91528
502.9490	120	60353.8800	3577.1742	67.4878	16.8719	2.02463
618.6400	120	74236.8000	4106.6036	72.3097	18.0774	2.16929
692.3000	120	83076.0000	4426.4307	75.0727	18.7682	2.25218
734.2400	120	88108.8000	4603.4434	76.5590	19.1398	2.29677
755.1487	120	90617.8440	4690.4276	77.2790	19.3197	2.31837
813.0081	120	97560.9720	4927.0545	79.2043	19.8011	2.37613

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	150	9750.000	1061.0594	36.7557	9.1889	0.88214
150.6740	150	22601.100	1858.4734	48.6444	12.1611	1.16747
237.8121	150	35671.815	2519.3399	56,6368	14.1592	1.35928
336.1680	150	50425.200	3173.2311	63.5632	15.8908	1.52552
425.7734	150	63866.010	3714.6378	68.7723	17.1931	1.65053
502.9490	150	75442.350	4150.9429	72.6990	18.1748	1.74478
618.6400	150	92796.000	4765.2914	77.8932	19.4733	1.86944
692.3000	150	103845.000	5136.4179	80.8696	20.2174	1.94087
734.2400	150	110136.000	5341.8229	82.4707	20.6177	1.97930
755.1487	150	113272.305	5442.7591	83.2462	20.8116	1.99791
813.0081	150	121951.215	5717.3403	85.3202	21.3301	2.04769

	Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
I	(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m^3/m^2*dia)
	65.0000	240	15600.000	1451.5088	42.9897	10.7474	0.64485
Γ	150.6740	240	36161.760	2542.3558	56.8949	14.2237	0.85342
	237.8121	240	57074.904	3446.4085	66.2428	16.5607	0.99364
Γ	336.1680	240	80680.320	4340.9191	74.3440	18.5860	1.11516
	425.7734	240	102185.616	5081.5531	80.4365	20.1091	1.20655
Γ	502.9490	240	120707.760	5678.4100	85.0293	21.2573	1.27544
Γ	618.6400	240	148473.600	6518.8269	91.1045	22.7761	1.36657
	692.3000	240	166152.000	7026.5208	94.5856	23.6464	1.41878
	734.2400	240	176217.600	7307.5110	96.4583	24.1146	1.44688
	755.1487	240	181235.688	7445.5897	97.3654	24.3413	1.46048
Γ	813.0081	240	195121.944	7821.2115	99.7912	24.9478	1.49687

APÉNDICE

 Γ

Variación de TRH a partir de volúmenes constantes Relación 1:4 Altura: Diámetro

Variación de TRH a partir de volúmenes constantes Relación 1:4 Altura: Diámetro

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	90.0000	5850	754.815017	1.2400
150.6740	38.8255	5850	754.815017	2.8745
237.8121	24.5993	5850	754.815017	4.5369
336.1680	17.4020	5850	754.815017	6.4133
425.7734	13.7397	5850	754.815017	8.1227
502.9490	11.6314	5850	754.815017	9.5950
618.6400	9.4562	5850	754.815017	11.8021
692.3000	8.4501	5850	754.815017	13.2074
734.2400	7.9674	5850	754.815017	14.0075
755.1487	7.7468	5850	754.815017	14.4064
813.0081	7.1955	5850	754.815017	15.5102

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	120.0000	7800	1451.509	0.64485
150.6740	51.7674	7800	1451.509	1.49479
237.8121	32.7990	7800	1451.509	2.35927
336.1680	23.2027	7800	1451.509	3.33503
425.7734	18.3196	7800	1451.509	4.22397
502.9490	15.5085	7800	1451.509	4.98961
618.6400	12.6083	7800	1451.509	6.13735
692.3000	11.2668	7800	1451.509	6.86811
734.2400	10.6232	7800	1451.509	7.28418
755.1487	10.3291	7800	1451.509	7.49161
813.0081	9.5940	7800	1451.509	8.06562

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm²)	(m^3/m^2*dia)
65.0000	1045.5905	67963.3830	3871.862688	0.24174
150.6740	451.0624	67963.3830	3871.862688	0.56038
237.8121	285.7861	67963.3830	3871.862688	0.88446
336.1680	202.1709	67963.3830	3871.862688	1.25026
425.7734	159.6234	67963.3830	3871.862688	1.58351
502.9490	135.1298	67963.3830	3871.862688	1.87054
618.6400	109.8593	67963.3830	3871.862688	2.30081
692.3000	98.1704	67963.3830	3871.862688	2.57476
734.2400	92.5629	67963.3830	3871.862688	2.73074
755.1487	90.0000	67963.3830	3871.862688	2.80850
813.0081	83.5950	67963.3830	3871.862688	3.02369

Flujos	TRH	Volumen Area		Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	928.5212	60353.8800	3577.1742	0.2617
150.6740	400.5594	60353.8800	3577.1742	0.6065
237.8121	253.7881	60353.8800	3577.1742	0.9573
336.1680	179.5349	60353.8800	3577.1742	1.3533
425.7734	141.7512	60353.8800	3577.1742	1.7140
502.9490	120.0000	60353.8800	3577.1742	2.0246
618.6400	97.5590	60353.8800	3577.1742	2.4904
692.3000	87.1788	60353.8800	3577.1742	2.7869
734.2400	82.1991	60353.8800	3577.1742	2.9557
755.1487	79.9232	60353.8800	3577.1742	3.0399
813.0081	74.2353	60353.8800	3577.1742	3.2728

Variación de TRH a partir de volúmenes constantes Relación 4:1 Diámetro:Altura

Flujos	TRH	Volumen	Volumen Area	
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1394.121	90617.8440	4690.4276	0.200
150.6740	601.4166	90617.8440	4690.4276	0.463
237.8121	381.0481	90617.8440	4690.4276	0.730
336.1680	269.5612	90617.8440	4690.4276	1.032
425.7734	212.8312	90617.8440	4690.4276	1.307
502.9490	180.1730	90617.8440	4690.4276	1.544
618.6400	146.4791	90617.8440	4690.4276	1.899
692.3000	130.8939	90617.8440	4690.4276	2.125
734.2400	123.4172	90617.8440	4690.4276	2.254
755.1487	120.0000	90617.8440	4690.4276	2.318
813.0081	111.4600	90617.8440	4690.4276	2.496

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	150.0000	9750	1061.0594	0.88214
150.6740	64.7092	9750	1061.0594	2.04485
237.8121	40.9988	9750	1061.0594	3.22743
336.1680	29.0034	9750	1061.0594	4.56225
425.7734	22.8995	9750	1061.0594	5.77832
502.9490	19.3857	9750	1061.0594	6.82569
618.6400	15.7604	9750	1061.0594	8.39577
692.3000	14.0835	9750	1061.0594	9.39544
734.2400	13.2790	9750	1061.0594	9.96462
755.1487	12.9114	9750	1061.0594	10.24838
813.0081	11.9925	9750	1061.0594	11.03361

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1742.65085	113272.305	5442.7591	0.17197
150.6740	751.7707	113272.305	5442.7591	0.39864
237.8121	476.3101	113272.305	5442.7591	0.62918
336.1680	336.9515	113272.305	5442.7591	0.88941
425.7734	266.0389	113272.305	5442.7591	1.12648
502.9490	225.2163	113272.305	5442.7591	1.33066
618.6400	183.0989	113272.305	5442.7591	1.63675
692.3000	163.6174	113272.305	5442.7591	1.83163
734.2400	154.2715	113272.305	5442.7591	1.94259
755.1487	150.0000	113272.305	5442.7591	1.99791
813.0081	139,3249	113272.305	5442.7591	2.15099

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(min) (cm ³)		(m³/m²*día)
65.0000	240.0000	15600	1451.5088	0.64485
150.6740	103.5348	15600	1451.5088	1.49479
237.8121	65.5980	15600	1451.5088	2.35927
336.1680	46.4054	15600	1451.5088	3.33503
425.7734	36.6392	15600	1451.5088	4.22397
502.9490	31.0171	15600	1451.5088	4.98961
618.6400	25.2166	15600	1451.5088	6.13735
692.3000	22.5336	15600	1451.5088	6.86811
734.2400	21.2465	15600	1451.5088	7.28418
755.1487	20.6582	15600	1451.5088	7.49161
813.0081	19.1880	15600	1451.5088	8.06562

Variación de TRH a partir de volúmenes constantes Relación 4:1 Diámetro:Altura

Flujos	TRH	Volumen	Area	Vo
_(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1857.0425	120707.76	5678.4100	0.1648
150.6740	801.1187	120707.76	5678.4100	0.3821
237.8121	507.5762	120707.76	5678.4100	0.6031
336.1680	359.0698	120707.76	5678.4100	0.8525
425.7734	283.5024	120707.76	5678.4100	1.0797
502.9490	240.0000	120707.76	5678.4100	1.2754
618.6400	195.1179	120707.76	5678.4100	1.5688
692.3000	174.3576	120707.76	5678.4100	1.7556
734.2400	164.3982	120707.76	5678.4100	1.8620
755.1487	159.8463	120707.76	5678.4100	1.9150
813.0081	148.4706	120707.76	5678.4100	2.0617

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m^3/m^2*dia)
65.0000	2788.2414	181235.688	7445.5897	0.12571
150.6740	1202.8332	181235.688	7445.5897	0.29141
237.8121	762.0962	181235.688	7445.5897	0.45994
336.1680	539.1224	181235.688	7445.5897	0.65016
425.7734	425.6623	181235.688	7445.5897	0.82346
502.9490	360.3461	181235.688	7445.5897	0.97272
618.6400	292.9582	181235.688	7445.5897	1.19647
692.3000	261.7878	181235.688	7445.5897	1.33893
734.2400	246.8344	181235.688	7445.5897	1.42004
755.1487	240.0000	181235.688	7445.5897	1.46048
813.0081	222.9199	181235.688	7445.5897	1.57238

APÉNDICE

D

Dimensiones para sedimentador

Relación 1:10 Altura: Diámetro

Dimensiones para sedimentador Relación 1:10 Altura: Diámetro

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	90	5850.0000	1390.3811	42.0748	4.2075	0.67320
150.6740	90	13560.6600	2435.2890	55.6840	5.5684	0.89094
237.8121	90	21403.0890	3301.2691	64.8329	6.4833	1.03733
336.1680	90	30255.1200	4158.1091	72.7617	7.2762	1.16419
425.7734	90	38319.6060	4867.5526	78.7246	7.8725	1.25959
502.9490	90	45265.4100	5439.2740	83.2196	8.3220	1.33151
618.6400	90	55677.6000	6244.2982	89.1655	8.9166	1.42665
692.3000	90	62307.0000	6730.6115	92.5726	9.2573	1.48116
734.2400	90	66081.6000	6999.7682	94.4054	9.4405	1.51049
755.1487	90	67963.3830	7132.0320	95.2932	9.5293	1.52469
813.0081	90	73170.7290	7491.8352	97.6673	9.7667	1.56268

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	120	7800.000	1684.327	46.3093	4.6309	0.55571
150.6740	120	18080.880	2950.143	61.2882	6.1288	0.73546
237.8121	120	28537.452	3999.203	71.3579	7.1358	0.85629
336.1680	120	40340.160	5037.190	80.0846	8.0085	0.96102
425.7734	120	51092.808	5896.620	86.6476	8.6648	1.03977
502.9490	120	60353.880	6589.211	91.5950	9.1595	1.09914
618.6400	120	74236.800	7564.429	98.1393	9.8139	1.17767
692.3000	120	83076.000	8153,555	101.8893	10.1889	1.22267
734.2400	120	88108.800	8479.615	103.9066	10.3907	1.24688
755.1487	120	90617.844	8639.842	104.8837	10.4884	1.25860
813.0081	120	97560.972	9075.712	107.4968	10.7497	1.28996

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	150	9750.000	1954.4881	49.8852	4.9885	0.47890
150.6740	150	22601.100	3423.3372	66.0207	6.6021	0.63380
237,8121	150	35671.815	4640.6637	76,8679	7.6868	0.73793
336.1680	150	50425.200	5845.1417	86.2686	8.6269	0.82818
425.7734	150	63866.010	6842.4214	93.3383	9.3338	0.89605
502.9490	150	75442.350	7646.1022	98.6677	9.8668	0.94721
618.6400	150	92796.000	8777.7417	105.7174	10.5717	1.01489
692.3000	150	103845.000	9461.3626	109.7569	10.9757	1.05367
734.2400	150	110136.000	9839.7220	111.9300	11.1930	1.07453
755.1487	150	113272.305	10025.648	112.9825	11.2983	1.08463
813.0081	150	121951,215	10531.431	115.7974	11.5797	1,11165

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	240	15600.000	2673.7022	58.3461	5.8346	0.35008
150.6740	240	36161.760	4683.0594	77.2182	7.7218	0.46331
237.8121	240	57074.904	6348.3387	89.9053	8.9905	0.53943
336.1680	240	80680.320	7996.0414	100.9003	10.0900	0.60540
425.7734	240	102185.62	9360.3008	109.1692	10.9169	0.65501
502.9490	240	120707.76	10459.721	115.4025	11.5402	0.69241
618.6400	240	148473.60	12007.782	123.6478	12.3648	0.74189
692.3000	240	166152.00	12942.962	128.3725	12.8372	0.77023
734.2400	240	176217.60	13460.550	130.9141	13.0914	0.78548
755.1487	240	181235.69	13714.894	132.1452	13.2145	0.79287
813.0081	240	195121.94	14406.795	135.4374	13.5437	0.81262

APÉNDICE

E

Variación de TRH a partir de volúmenes constantes Relación 1:10 Altura: Diámetro

91

Variación de TRH a partir de volúmenes constantes Relación 1:10 Altura: Diámetro

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65,0000	90,0000	5850	1390.3811	0.67320
150.6740	38.8255	5850	1390.3811	1.56051
237.8121	24.5993	5850	1390.3811	2.46299
336.1680	17.4020	5850	1390.3811	3.48165
425.7734	13.7397	5850	1390.3811	4.40968
502.9490	11.6314	5850	1390.3811	5.20898
618.6400	9.4562	5850	1390.3811	6.40718
692.3000	8.4501	5850	1390.3811	7.17006
734.2400	7.9674	5850	1390.3811	7.60443
755.1487	7.7468	5850	1390.3811	7.82098
813.0081	7.1955	5850	1390.3811	8.42022

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1045,5905	67963.3830	7132.032	0.13124
150.6740	451.0624	67963.3830	7132.032	0.30422
237.8121	285.7861	67963.3830	7132.032	0.48016
336.1680	202.1709	67963.3830	7132.032	0.67874
425.7734	159.6234	67963.3830	7132.032	0.85966
502.9490	135.1298	67963.3830	7132.032	1.01548
618.6400	109.8593	67963.3830	7132.032	1.24907
692.3000	98.1704	67963.3830	7132.032	1.39780
734.2400	92.5629	67963.3830	7132.032	1.48247
755.1487	90.0000	67963.3830	7132.032	1.52469
813.0081	83.5950	67963.3830	7132.032	1.64151

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	120.0000	7800	1684.327	0.55571
150.6740	51.7674	7800	1684.327	1.28817
237.8121	32.7990	7800	1684.327	2.03315
336.1680	23.2027	7800	1684.327	2.87404
425.7734	18.3196	7800	1684.327	3.64011
502.9490	15.5085	7800	1684.327	4.29992
618.6400	12.6083	7800	1684.327	5.28901
692.3000	11.2668	7800	1684.327	5.91876
734.2400	10.6232	7800	1684.327	6.27732
755.1487	10.3291	7800	1684.327	6.45607
813.0081	9.5940	7800	1684.327	6.95074

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	928.5212	60353.8800	6589.2110	0.14205
150.6740	400.5594	60353.8800	6589.2110	0.32928
237.8121	253.7881	60353.8800	6589.2110	0.51971
336.1680	179.5349	60353.8800	6589.2110	0.73466
425.7734	141.7512	60353.8800	6589.2110	0.93048
502.9490	120.0000	60353.8800	6589.2110	1.09914
618.6400	97.5590	60353.8800	6589.2110	1.35197
692.3000	87.1788	60353.8800	6589.2110	1.51295
734.2400	82.1991	60353.8800	6589.2110	1.60460
755.1487	79.9232	60353.8800	6589.2110	1.65029
813.0081	74.2353	60353.8800	6589.2110	1.77674

Variación de TRH a partir de volúmenes constantes Relación 10:1 Diámetro:Altura

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1394.121	90617.8440	8639.8420	0.10834
150.6740	601.4166	90617.8440	8639.8420	0.25113
237.8121	381.0481	90617.8440	8639.8420	0.39636
336.1680	269.5612	90617.8440	8639.8420	0.56029
425.7734	212.8312	90617.8440	8639.8420	0.70964
502.9490	180.1730	90617.8440	8639.8420	0.83826
618.6400	146.4791	90617.8440	8639.8420	1.03109
692.3000	130.8939	90617.8440	8639.8420	1.15385
734.2400	123.4172	90617.8440	8639.8420	1.22376
755.1487	120.0000	90617.8440	8639.8420	1.25860
813.0081	111.4600	90617.8440	8639.8420	1.35504

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	150.0000	9750	1954.4881	0.47890
150.6740	64.7092	9750	1954.4881	1.11011
237.8121	40.9988	9750	1954.4881	1.75212
336.1680	29.0034	9750	1954.4881	2.47677
425.7734	22.8995	9750	1954.4881	3.13695
502.9490	19.3857	9750	1954.4881	3.70556
618.6400	15.7604	9750	1954.4881	4.55793
692.3000	14.0835	9750	1954.4881	5.10063
734.2400	13.2790	9750	1954.4881	5.40963
755.1487	12.9114	9750	1954.4881	5.56368
813.0081	11.9925	9750	1954.4881	5.98997

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65.0000	1742.65085	113272.305	10025.6480	0.09336
150.6740	751.7707	113272.305	10025.6480	0.21642
237.8121	476.3101	113272.305	10025.6480	0.34157
336.1680	336.9515	113272.305	10025.6480	0.48284
425.7734	266.0389	113272.305	10025.6480	0.61155
502.9490	225.2163	113272.305	10025.6480	0.72239
618.6400	183.0989	113272.305	10025.6480	0.88856
692.3000	163.6174	113272.305	10025.6480	0.99436
734.2400	154.2715	113272.305	10025.6480	1.05460
755.1487	150.0000	113272.305	10025.6480	1.08463
813.0081	139.3249	113272.305	10025.6480	1.16774

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65	240.0000	15600	2673.7022	0.3501
150.674	103.5348	15600	2673.7022	0.8115
237.8121	65.5980	15600	2673.7022	1.2808
336.168	46.4054	15600	2673.7022	1.8105
425.7734	36.6392	15600	2673.7022	2.2931
502.949	31.0171	15600	2673.7022	2.7088
618.64	25.2166	15600	2673.7022	3.3319
692.3	22.5336	15600	2673.7022	3.7286
734.24	21.2465	15600	2673.7022	3.9545
755.1487	20.6582	15600	2673.7022	4.0671
813.0081	19.1880	15600	2673.7022	4.3787

Variación de TRH a partir de volúmenes constantes Relación 10:1 Diámetro:Altura

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65	1857.0425	120707.76	10459.7210	0.0895
150.674	801.1187	120707.76	10459.7210	0.2074
237.8121	507.5762	120707.76	10459.7210	0.3274
336.168	359.0698	120707.76	10459.7210	0.4628
425.7734	283.5024	120707.76	10459.7210	0.5862
502.949	240.0000	120707.76	10459.7210	0.6924
618.64	195.1179	120707.76	10459.7210	0.8517
692.3	174.3576	120707.76	10459.7210	0.9531
734.24	164.3982	120707.76	10459.7210	1.0108
755.1487	159.8463	120707.76	10459.7210	1.0396
813.0081	148.4706	120707.76	10459.7210	1.1193

Flujos	TRH	Volumen	Area	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(m³/m²*día)
65	2788.2414	181235.688	13714.8940	0.06825
150.674	1202.8332	181235.688	13714.8940	0.15820
237.8121	762.0962	181235.688	13714.8940	0.24969
336.168	539.1224	181235.688	13714.8940	0.35296
425.7734	425.6623	181235,688	13714.8940	0.44704
502.949	360.3461	181235.688	13714.8940	0.52807
618.64	292.9582	181235.688	13714.8940	0.64954
692.3	261.7878	181235.688	13714.8940	0.72688
734.24	246.8344	181235.688	13714.8940	0.77092
755.1487	240,0000	181235.688	13714.8940	0.79287
813.0081	222.9199	181235.688	13714.8940	0.85362

APÉNDICE

F

Dimensiones para sedimentador circular Relación 1:7.5 Altura:Diámetro

Dimensiones para Sedimentador Circular Relación 1:7.5 Altura:Diámetro

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	430.7692	28000.0000	2143.7558	52.2448	6.9660	0.43662
150.6740	185.8317	28000.0000	2143.7558	52.2448	6.9660	1.01210
237.8121	117.7400	28000.0000	2143.7558	52.2448	6.9660	1.59743
336.1680	83.2917	28000.0000	2143.7558	52.2448	6.9660	2.25810
425.7734	65.7627	28000.0000	2143.7558	52.2448	6.9660	2.86000
502.9490	55.6716	28000.0000	2143.7558	52.2448	6.9660	3.37840
618.6400	45.2606	28000.0000	2143.7558	52.2448	6.9660	4.15552
692,3000	40.4449	28000.0000	2143.7558	52.2448	6.9660	4.65031
734.2400	38.1347	28000,0000	2143.7558	52.2448	6.9660	4.93202
755.1487	37.0788	28000.0000	2143.7558	52.2448	6.9660	5.07247
813.0081	34.4400	28000.0000	2143.7558	52.2448	6.9660	5.46112

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	438.4615	28500.0000	2169.2013	52.5539	7.0072	0.43150
150.6740	189.1501	28500.0000	2169.2013	52.5539	7.0072	1.00023
237.8121	119.8425	28500.0000	2169.2013	52.5539	7.0072	1.57869
336.1680	84.7790	28500.0000	2169.2013	52.5539	7.0072	2.23161
425.7734	66.9370	28500.0000	2169.2013	52.5539	7.0072	2.82645
502.9490	56.6658	28500.0000	2169.2013	52.5539	7.0072	3.33877
618.6400	46.0688	28500.0000	2169.2013	52.5539	7.0072	4.10677
692.3000	41.1671	28500.0000	2169.2013	52.5539	7.0072	4.59576
734.2400	38.8156	28500,0000	2169.2013	52.5539	7.0072	4.87417
755.1487	37.7409	28500.0000	2169.2013	52.5539	7.0072	5.01297
813.0081	35.0550	28500.0000	2169.2013	52.5539	7.0072	5.39706

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	446.1538	29000,0000	2194.4985	52.8595	7.0479	0.42652
150.6740	192.4685	29000.0000	2194.4985	52.8595	7.0479	0.98870
237.8121	121.9450	29000.0000	2194.4985	52.8595	7.0479	1.56049
336.1680	86.2664	29000.0000	2194.4985	52.8595	7.0479	2.20589
425.7734	68.1113	29000,0000	2194.4985	52.8595	7.0479	2.79387
502.9490	57.6599	29000.0000	2194.4985	52.8595	7.0479	3.30028
618.6400	46.8770	29000.0000	2194.4985	52.8595	7.0479	4.05943
692.3000	41.8894	29000.0000	2194.4985	52,8595	7.0479	4.54278
734.2400	39.4966	29000,0000	2194.4985	52.8595	7.0479	4.81798
755.1487	38.4030	29000.0000	2194.4985	52.8595	7.0479	4.95518
813.0081	35.6700	29000,0000	2194,4985	52.8595	7.0479	5.33485

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	453.8462	29500.0000	2219.6507	53.1615	7.0882	0.42169
150.6740	195.7869	29500.0000	2219.6507	53.1615	7.0882	0.97750
237.8121	124.0475	29500.0000	2219.6507	53.1615	7.0882	1.54281
336.1680	87.7537	29500.0000	2219.6507	53.1615	7.0882	2.18089
425.7734	69.2857	29500.0000	2219.6507	53.1615	7.0882	2.76221
502.9490	58.6541	29500.0000	2219.6507	53.1615	7.0882	3.26289
618.6400	47.6852	29500.0000	2219.6507	53.1615	7.0882	4.01343
692.3000	42.6116	29500.0000	2219.6507	53.1615	7.0882	4.49130
734.2400	40.1776	29500.0000	2219.6507	53.1615	7.0882	4.76339
755.1487	39.0652	29500.0000	2219.6507	53.1615	7.0882	4.89903
813.0081	36.2850	29500.0000	2219.6507	53.1615	7.0882	5.27440

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	461.5385	30000.0000	2244.6612	53.4602	7.1280	0.41699
150.6740	199.1054	30000.0000	2244.6612	53.4602	7.1280	0.96661
237.8121	126.1500	30000.0000	2244.6612	53.4602	7.1280	1.52562
336.1680	89.2411	30000.0000	2244.6612	53.4602	7.1280	2.15659
425.7734	70.4600	30000.0000	2244.6612	53.4602	7.1280	2.73143
502.9490	59.6482	30000.0000	2244.6612	53.4602	7.1280	3.22653
618.6400	48.4935	30000.0000	2244.6612	53.4602	7.1280	3.96871
692.3000	43.3338	30000.0000	2244.6612	53.4602	7.1280	4.44126
734.2400	40.8586	30000.0000	2244.6612	53.4602	7.1280	4.71031
755.1487	39.7273	30000.0000	2244.6612	53.4602	7.1280	4.84445
813.0081	36.9000	30000.0000	2244,6612	53.4602	7.1280	5.21563

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	469.2308	30500.0000	2269.5331	53.7556	7.1674	0.41242
150.6740	202.4238	30500.0000	2269.5331	53.7556	7.1674	0.95601
237.8121	128.2525	30500.0000	2269.5331	53.7556	7.1674	1.50890
336.1680	90.7284	30500.0000	2269.5331	53.7556	7.1674	2.13296
425.7734	71.6343	30500.0000	2269.5331	53.7556	7.1674	2.70150
502.9490	60.6423	30500.0000	2269.5331	53.7556	7.1674	3.19117
618.6400	49.3017	30500,0000	2269.5331	53.7556	7.1674	3.92522
692.3000	44.0560	30500.0000	2269.5331	53.7556	7.1674	4.39259
734.2400	41.5396	30500.0000	2269.5331	53.7556	7.1674	4.65869
755.1487	40.3894	30500.0000	2269.5331	53.7556	7.1674	4.79136
813.0081	37.5150	30500.0000	2269.5331	53.7556	7.1674	5.15847

Dimensiones para Sedimentador Circular Relación 7.5:1 Diámetro:Altura

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	769.2308	50000.0000	3155.3676	63.3841	8.4512	0.29664
150.6740	331.8423	50000.0000	3155.3676	63.3841	8.4512	0.68762
237.8121	210.2500	50000.0000	3155.3676	63.3841	8.4512	1.08529
336.1680	148.7352	50000.0000	3155.3676	63.3841	8.4512	1.53415
425.7734	117.4334	50000.0000	3155.3676	63.3841	8.4512	1.94308
502.9490	99.4137	50000.0000	3155.3676	63.3841	8.4512	2.29528
618.6400	80.8224	50000.0000	3155.3676	63.3841	8.4512	2.82326
692.3000	72.2230	50000,0000	3155.3676	63.3841	8.4512	3.15942
734.2400	68.0976	50000.0000	3155.3676	63.3841	8.4512	3.35082
755.1487	66.2121	50000.0000	3155.3676	63.3841	8.4512	3.44624
813.0081	61.5000	50000.0000	3155.3676	63.3841	8.4512	3.71029

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	923.0769	60000.0000	3563.1775	67.3556	8.9807	0.26269
150.6740	398.2107	60000.0000	3563.1775	67.3556	8.9807	0.60892
237.8121	252.3000	60000.0000	3563.1775	67.3556	8.9807	0.96108
336.1680	178.4822	60000,0000	3563.1775	67.3556	8.9807	1.35857
425.7734	140.9200	60000.0000	3563.1775	67.3556	8.9807	1.72069
502.9490	119.2964	60000.0000	3563.1775	67.3556	8.9807	2.03259
618.6400	96.9869	60000.0000	3563,1775	67.3556	8.9807	2.50013
692.3000	86.6676	60000,0000	3563.1775	67.3556	8.9807	2.79782
734.2400	81.7171	60000.0000	3563.1775	67.3556	8.9807	2.96731
755.1487	79.4545	60000,0000	3563.1775	67.3556	8.9807	3.05181
813.0081	73.8000	60000,0000	3563.1775	67.3556	8.9807	3.28564

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	1076.9231	70000.0000	3948.8319	70.9070	9.4543	0.23703
150.6740	464.5792	70000.0000	3948.8319	70.9070	9.4543	0.54946
237.8121	294.3500	70000.0000	3948.8319	70.9070	9.4543	0.86722
336.1680	208.2292	70000,0000	3948.8319	70.9070	9.4543	1.22589
425.7734	164.4067	70000.0000	3948.8319	70.9070	9.4543	1.55265
502.9490	139.1791	70000.0000	3948.8319	70.9070	9.4543	1.83408
618.6400	113.1514	70000.0000	3948.8319	70.9070	9.4543	2.25596
692.3000	101.1122	70000.0000	3948.8319	70.9070	9.4543	2.52457
734.2400	95.3367	70000.0000	3948.8319	70.9070	9.4543	2.67751
755.1487	92.6970	70000.0000	3948.8319	70.9070	9.4543	2.75376
813.0081	86.1000	70000.0000	3948.8319	70.9070	9.4543	2.96475

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm²)	(cm)	(cm)	(m³/m²*día)
65.0000	1230.7692	80000.0000	4316.4821	74.1344	9.8846	0.21684
150.6740	530.9476	80000.0000	4316.4821	74.1344	9.8846	0.50266
237.8121	336.4000	80000.0000	4316.4821	74.1344	9.8846	0.79335
336.1680	237.9762	80000.0000	4316.4821	74.1344	9.8846	1.12147
425.7734	187.8934	80000.0000	4316.4821	74.1344	9.8846	1.42040
502.9490	159.0619	80000.0000	4316.4821	74.1344	9.8846	1.67786
618.6400	129.3159	80000.0000	4316.4821	74.1344	9.8846	2.06381
692.3000	115.5568	80000.0000	4316.4821	74.1344	9.8846	2.30955
734.2400	108.9562	80000,0000	4316.4821	74.1344	9.8846	2.44946
755.1487	105.9394	80000.0000	4316.4821	74.1344	9.8846	2.51921
813.0081	98.4000	80000.0000	4316.4821	74.1344	9.8846	2.71224

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)	(cm ²)	(cm)	(cm)	(m³/m²*día)
65.0000	1384.6154	90000.0000	4669.0834	77.1029	10.2804	0.20047
150.6740	597.3161	90000.0000	4669.0834	77.1029	10.2804	0.46470
237.8121	378.4500	90000.0000	4669.0834	77.1029	10.2804	0.73344
336.1680	267.7233	90000.0000	4669.0834	77.1029	10.2804	1.03678
425.7734	211.3800	90000.0000	4669.0834	77.1029	10.2804	1.31314
502.9490	178.9446	90000.0000	4669.0834	77.1029	10.2804	1.55115
618.6400	145.4804	90000.0000	4669.0834	77.1029	10.2804	1.90796
692.3000	130.0014	90000.0000	4669.0834	77.1029	10.2804	2.13513
734.2400	122.5757	90000.0000	4669.0834	77.1029	10.2804	2.26448
755.1487	119.1818	90000.0000	4669.0834	77.1029	10.2804	2.32897
813.0081	110.7000	90000.0000	4669.0834	77.1029	10.2804	2.50741

Flujos	TRH	Volumen	Area	Diametro	Altura	Vo
(ml/min)	(min)	(cm ³)_	(cm²)	(cm)	(cm)	(m³/m²*día)
65.0000	1538.4615	100000.0000	5008.8338	79.8589	10.6479	0.18687
150.6740	663.6845	100000.0000	5008.8338	79.8589	10.6479	0.43318
237.8121	420.5001	100000.0000	5008.8338	79.8589	10.6479	0.68369
336.1680	297.4703	100000,0000	5008.8338	79.8589	10.6479	0.96646
425.7734	234.8667	100000,0000	5008.8338	79.8589	10.6479	1.22406
502.9490	198.8273	100000.0000	5008.8338	79.8589	10.6479	1.44594
618.6400	161.6449	100000.0000	5008.8338	79.8589	10.6479	1.77854
692.3000	144.4460	100000.0000	5008.8338	79.8589	10.6479	1.99031
734.2400	136.1952	100000,0000	5008.8338	79.8589	10.6479	2.11088
755.1487	132.4242	100000.0000	5008.8338	79.8589	10.6479	2.17099
813.0081	123.0000	100000.0000	5008.8338	79.8589	10.6479	2.33733

APÉNDICE

G

U Calculada con Fr 0.0748 y L = H Lado + H Centro

U Calculada con Fr = 0.0748 y L = H Lado + H Centro

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	1127.7503	73303.7667	7853.975	100.0000	8.0000	4.0000	2.06769	0.08116	0.00000182
150.6740	0.0000025	486.5057	73303.7667	7853.975	100.0000	8.0000	4.0000	0.89199	0.08116	0.00000422
237.8121	0.0000040	308.2424	73303.7667	7853.975	100.0000	8.0000	4.0000	0.56515	0.08116	0.00000666
336.1680	0.0000056	218.0569	73303.7667	7853.975	100.0000	8.0000	4.0000	0.39980	0.08116	0.00000942
425.7734	0.0000071	172.1661	73303.7667	7853.975	100.0000	8.0000	4.0000	0.31566	0.08116	0.00001193
502.9490	0.0000084	145.7479	73303.7667	7853.975	100.0000	8.0000	4.0000	0.26722	0.08116	0.00001409
618.6400	0.0000103	118.4918	73303.7667	7853.975	100.0000	8.0000	4.0000	0.21725	0.08116	0.00001733
692.3000	0.0000115	105.8844	73303.7667	7853.975	100.0000	8.0000	4.0000	0.19414	0.08116	0.00001940
734.2400	0.0000122	99.8362	73303.7667	7853.975	100.0000	8.0000	4.0000	0.18305	0.08116	0.00002057
755.1487	0.0000126	97.0720	73303.7667	7853.975	100.0000	8.0000	4.0000	0.17798	0.08116	0.00002116
813.0081	0.0000136	90.1636	73303.7667	7853.975	100.0000	8.0000	4.0000	0.16531	0.08116	0.00002278

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	1768.9568	114982.194	11309.724	120.0000	8.5000	5.0000	2.25231	0.08608	0.00000182
150.6740	0.0000025	763.1190	114982.194	11309.724	120.0000	8.5000	5.0000	0.97163	0.08608	0.00000422
237.8121	0.0000040	483.5002	114982.194	11309.724	120.0000	8.5000	5.0000	0.61561	0.08608	0.00000666
336.1680	0.0000056	342.0379	114982.194	11309.724	120.0000	8.5000	5.0000	0.43550	0.08608	0.00000942
425.7734	0.0000071	270.0549	114982.194	11309.724	120.0000	8.5000	5.0000	0.34384	0.08608	0.00001193
502.9490	0.0000084	228.6160	114982.194	11309.724	120.0000	8.5000	5.0000	0.29108	0.08608	0.00001409
618.6400	0.0000103	185.8629	114982.194	11309.724	120.0000	8.5000	5.0000	0.23665	0.08608	0.00001733
692.3000	0.0000115	166.0872	114982.194	11309.724	120.0000	8.5000	5.0000	0.21147	0.08608	0.00001940
734.2400	0.0000122	156.6003	114982.194	11309.724	120.0000	8.5000	5.0000	0.19939	0.08608	0.00002057
755.1487	0.0000126	152.2643	114982.194	11309.724	120.0000	8.5000	5.0000	0.19387	0.08608	0.00002116
813.0081	0.0000136	141.4281	114982.194	11309.724	120.0000	8.5000	5.0000	0.18007	0.08608	0.00002278

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	2841.9306	184725.492	15393.791	140.0000	10.0000	6.0000	2.65846	0.09371	0.00000182
150.6740	0.0000025	1225.9945	184725.492	15393.791	140.0000	10.0000	6.0000	1.14685	0.09371	0.00000422
237.8121	0.0000040	776.7708	184725.492	15393.791	140.0000	10.0000	6.0000	0.72662	0.09371	0.00000666
336.1680	0.0000056	549.5035	184725.492	15393.791	140.0000	10.0000	6.0000	0.51403	0.09371	0.00000942
425.7734	0.0000071	433.8587	184725.492	15393.791	140.0000	10.0000	6.0000	0.40585	0.09371	0.00001193
502.9490	0.0000084	367.2847	184725.492	15393.791	140.0000	10.0000	6.0000	0.34357	0.09371	0.00001409
618.6400	0.0000103	298.5993	184725.492	15393.791	140.0000	10.0000	6.0000	0.27932	0.09371	0.00001733
692.3000	0.0000115	266.8287	184725.492	15393.791	140.0000	10.0000	6.0000	0.24960	0.09371	0.00001940
734.2400	0.0000122	251.5873	184725.492	15393.791	140.0000	10.0000	6.0000	0.23535	0.09371	0.00002057
755.1487	0.0000126	244.6213	184725.492	15393.791	140.0000	10.0000	6.0000	0.22883	0.09371	0.00002116
813.0081	0.0000136	227.2124	184725.492	15393.791	140.0000	10.0000	6.0000	0.21254	0.09371	0.00002278

U Calculada con Fr = 0.0748 y L = H Lado + H Centro

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	3624.9115	235619.25	17671.444	150.0000	11.0000	7.0000	2.95385	0.09940	0.00000182
150.6740	0.0000025	1563.7685	235619.25	17671.444	150.0000	11.0000	7.0000	1.27427	0.09940	0.00000422
237.8121	0.0000040	990.7791	235619.25	17671.444	150.0000	11.0000	7.0000	0.80736	0.09940	0.00000666
336.1680	0.0000056	700.8973	235619.25	17671.444	150.0000	11.0000	7.0000	0.57114	0.09940	0.00000942
425.7734	0.0000071	553.3912	235619.25	17671.444	150.0000	11.0000	7.0000	0.45094	0.09940	0.00001193
502.9490	0.0000084	468.4754	235619.25	17671.444	150.0000	11.0000	7.0000	0.38175	0.09940	0.00001409
618.6400	0.0000103	380.8665	235619.25	17671.444	150.0000	11.0000	7.0000	0.31036	0.09940	0.00001733
692.3000	0.0000115	340.3427	235619.25	17671.444	150.0000	11.0000	7.0000	0.27734	0.09940	0.00001940
734.2400	0.0000122	320.9022	235619.25	17671.444	150.0000	11.0000	7.0000	0.26149	0.09940	0.00002057
755.1487	0.0000126	312.0170	235619.25	17671.444	150.0000	11.0000	7.0000	0.25425	0.09940	0.00002116
813.0081	0.0000136	289.8117	235619.25	17671.444	150.0000	11.0000	7.0000	0.23616	0.09940	0.00002278

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	805.5359	52359.8333	7853.975	100.0000	6.0000	2.0000	1.47692	0.06626	0.00000182
150.6740	0.0000025	347.5041	52359.8333	7853.975	100.0000	6.0000	2.0000	0.63714	0.06626	0.00000422
237.8121	0.0000040	220.1731	52359.8333	7853.975	100.0000	6.0000	2.0000	0.40368	0.06626	0.00000666
336.1680	0.0000056	155.7550	52359.8333	7853.975	100.0000	6.0000	2.0000	0.28557	0.06626	0.00000942
425.7734	0.0000071	122.9758	52359.8333	7853.975	100.0000	6.0000	2.0000	0.22547	0.06626	0.00001193
502.9490	0.0000084	104.1057	52359.8333	7853.975	100.0000	6.0000	2.0000	0.19087	0.06626	0.00001409
618.6400	0.0000103	84.6370	52359.8333	7853.975	100.0000	6.0000	2.0000	0.15518	0.06626	0.00001733
692.3000	0.0000115	75.6317	52359.8333	7853.975	100.0000	6.0000	2.0000	0.13867	0.06626	0.00001940
734.2400	0.0000122	71.3116	52359.8333	7853.975	100.0000	6.0000	2.0000	0.13075	0.06626	0.00002057
755.1487	0.0000126	69.3371	52359.8333	7853.975	100.0000	6.0000	2.0000	0.12713	0.06626	0.00002116
813.0081	0.0000136	64.4026	52359.8333	7853.975	100.0000	6.0000	2.0000	0.11808	0.06626	0.00002278

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	1391.9660	90477.792	11309.724	120.0000	7.0000	3.0000	1.77231	0.07409	0.00000182
150.6740	0.0000025	600.4871	90477.792	11309.724	120.0000	7.0000	3.0000	0.76456	0.07409	0.00000422
237.8121	0.0000040	380.4592	90477.792	11309.724	120.0000	7.0000	3.0000	0.48442	0.07409	0.00000666
336.1680	0.0000056	269.1446	90477.792	11309.724	120.0000	7.0000	3.0000	0.34269	0.07409	0.00000942
425.7734	0.0000071	212.5022	90477.792	11309.724	120.0000	7.0000	3.0000	0.27057	0.07409	0.00001193
502.9490	0.0000084	179.8946	90477.792	11309.724	120.0000	7.0000	3.0000	0.22905	0.07409	0.00001409
618.6400	0.0000103	146.2527	90477.792	11309.724	120.0000	7.0000	3.0000	0.18621	0.07409	0.00001733
692.3000	0.0000115	130.6916	90477.792	11309.724	120.0000	7.0000	3.0000	0.16640	0.07409	0.00001940
734.2400	0.0000122	123.2265	90477.792	11309.724	120.0000	7.0000	3.0000	0.15690	0.07409	0.00002057
755.1487	0.0000126	119.8145	90477.792	11309.724	120.0000	7.0000	3.0000	0.15255	0.07409	0.00002116
813.0081	0.0000136	111.2877	90477.792	11309.724	120.0000	7.0000	3.0000	0.14170	0.07409	0.00002278

U Calculada con Fr = 0.0748 y L = H Lado + H Centro

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	2289.3330	148806.646	15393.791	140.0000	8.0000	5.0000	2.14154	0.08447	0.00000182
150.6740	0.0000025	987.6067	148806.646	15393.791	140.0000	8.0000	5.0000	0.92385	0.08447	0.00000422
237.8121	0.0000040	625.7320	148806.646	15393.791	140.0000	8.0000	5.0000	0.58534	0.08447	0.00000666
336.1680	0.0000056	442.6556	148806.646	15393.791	140.0000	8.0000	5.0000	0.41408	0.08447	0.00000942
425.7734	0.0000071	349.4973	148806.646	15393.791	140.0000	8.0000	5.0000	0.32693	0.08447	0.00001193
502.9490	0.0000084	295.8683	148806.646	15393.791	140.0000	8.0000	5.0000	0.27677	0.08447	0.00001409
618.6400	0.0000103	240.5384	148806.646	15393.791	140.0000	8.0000	5.0000	0.22501	0.08447	0.00001733
692.3000	0.0000115	214.9453	148806.646	15393.791	140.0000	8.0000	5.0000	0.20107	0.08447	0.00001940
734.2400	0.0000122	202.6676	148806.646	15393.791	140.0000	8.0000	5.0000	0.18958	0.08447	0.00002057
755.1487	0.0000126	197.0561	148806.646	15393.791	140.0000	8.0000	5.0000	0.18433	0.08447	0.00002116
813.0081	0.0000136	183.0322	148806.646	15393.791	140.0000	8.0000	5.0000	0.17122	0.08447	0.00002278

Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	Re
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	
65.0000	0.0000011	2990.5520	194385.881	17671.444	150.0000	9.0000	6.0000	2.43692	0.09074	0.00000182
150.6740	0.0000025	1290.1090	194385.881	17671.444	150.0000	9.0000	6.0000	1.05128	0.09074	0.00000422
237.8121	0.0000040	817.3927	194385.881	17671.444	150.0000	9.0000	6.0000	0.66607	0.09074	0.00000666
336.1680	0.0000056	578.2403	194385.881	17671.444	150.0000	9.0000	6.0000	0.47119	0.09074	0.00000942
425.7734	0.0000071	456.5477	194385.881	17671.444	150.0000	9.0000	6.0000	0.37203	0.09074	0.00001193
502.9490	0.0000084	386.4922	194385.881	17671.444	150.0000	9.0000	6.0000	0.31494	0.09074	0.00001409
618.6400	0.0000103	314.2149	194385.881	17671.444	150.0000	9.0000	6.0000	0.25605	0.09074	0.00001733
692.3000	0.0000115	280.7827	194385.881	17671.444	150.0000	9.0000	6.0000	0.22880	0.09074	0.00001940
734.2400	0.0000122	264.7443	194385.881	17671.444	150.0000	9.0000	6.0000	0.21573	0.09074	0.00002057
755.1487	0.0000126	257.4140	194385.881	17671.444	150.0000	9.0000	6.0000	0.20976	0.09074	0.00002116
813.0081	0.0000136	239.0946	194385.881	17671.444	150.0000	9.0000	6.0000	0.19483	0.09074	0.00002278

Cálculos hechos para los datos del artículo de Quarini

Fr = 0.0748							_		L=0.16	L=0.15
Flujos	Flujos	TRH	Volumen	Area	Diametro	H Lado	H Centro	Vo	U	U
(ml/min)	(m³/s)	(min)	(cm³)	(cm²)	(cm)	(cm)	(cm)	(m³/m²*día)	(m/s)	(m/s)
65.0000	0.0000011	2841.9306	184725.492	15393.791	140.0000	10.0000	6.0000	2.65846	0.09371	0.09074
150.6740	0.0000025	1225.9945	184725.492	15393.791	140.0000	10.0000	6.0000	1.14685	0.09371	0.09074
237.8121	0.0000040	776.7708	184725.492	15393.791	140.0000	10.0000	6.0000	0.72662	0.09371	0.09074
336.1680	0.0000056	549.5035	184725.492	15393.791	140.0000	10.0000	6.0000	0.51403	0.09371	0.09074
425.7734	0.0000071	433.8587	184725.492	15393.791	140.0000	10,0000	6.0000	0.40585	0.09371	0.09074
502.9490	0.0000084	367.2847	184725.492	15393.791	140.0000	10.0000	6.0000	0.34357	0.09371	0.09074
618.6400	0.0000103	298.5993	184725.492	15393.791	140.0000	10.0000	6.0000	0.27932	0.09371	0.09074
692.3000	0.0000115	266.8287	184725.492	15393.791	140.0000	10.0000	6.0000	0.24960	0.09371	0.09074
734.2400	0.0000122	251.5873	184725.492	15393.791	140.0000	10.0000	6.0000	0.23535	0.09371	0.09074
755.1487	0.0000126	244.6213	184725.492	15393.791	140.0000	10.0000	6.0000	0.22883	0.09371	0.09074
813.008	0.00001	227.2124	184725.492	15393.791	140.000	10.0000	6.0000	0.21254	0.09371	0.09074
6000.000	0.00010	30.7876	184725.492	15393.791	140.000	10.0000	6.0000	0.02880	0.09371	0.09074
12000.000	0.00020	15.3938	184725.492	15393.791	140.000	10.0000	6.0000	0.01440	0.09371	0.09074

APÉNDICE H

Sedimentador típico

Sedimentador Típico

Diámetro: 23 metros

Velocidad Ascencial: 1.3 m/h 31.2 m/día

Altura: 8 metros

Volumen: 3926.99 m³

Fr: 0.000024033

Carga superficial tipica de 30 y 40 m³/m²*día

 $Fr = U / (g *L) ^0.5$

Cálculos para sedimentador de 1 metro de Diametro y 0.34 m de Alto

Flujo	Flujo	Flujo	TRH	Volumen	Area	Diametro	H Centro	Vo	Fr
(ml/min)	m³/día	(m^3/s)	(días)	(m^3)	(m^2)	(cm)	(cm)	(m³/m²*día)	
65.0000	0.0936	0.0000011	2.9184	0.273161251	0.7853975	100.0000	34.7800	0.11918	3.46E-07
150.6740	0.2170	0.0000025	1.2590	0.273161251	0.7853975	100.0000	34.7800	0.27626	8.02E-07
237.8121	0.3424	0.0000040	0.7977	0.273161251	0.7853975	100.0000	34.7800	0.43602	1.27E-06
336.1680	0.4841	0.0000056	0.5643	0.273161251	0.7853975	100.0000	34.7800	0.61635	1.79E-06
425.7734	0.6131	0.0000071	0.4455	0.273161251	0.7853975	100.0000	34.7800	0.78064	2.27E-06
502.9490	0.7242	0.0000084	0.3772	0.273161251	0.7853975	100.0000	34.7800	0.92214	2.68E-06
618.6400	0.8908	0.0000103	0.3066	0.273161251	0.7853975	100.0000	34.7800	1.13426	3.29E-06
692.3000	0.9969	0.0000115	0.2740	0.273161251	0.7853975	100.0000	34.7800	1.26931	3.68E-06
734.2400	1.0573	0.0000122	0.2584	0.273161251	0.7853975	100.0000	34.7800	1.34620	3.91E-06
755.1487	1.0874	0.0000126	0.2512	0.273161251	0.7853975	100.0000	34.7800	1.38454	4.02E-06
813.0081	1.1707	0.0000136	0.2333	0.273161251	0.7853975	100.0000	34.7800	1.49062	4.33E-06

Cálculos para sedimentador de 0.5 metros de Diametro y 0.34 m de Alto

Flujos	Flujo	Flujos	TRH	Volumen	Area	Diametro	H Centro	Vo	Fr
(ml/min)	m³/día	(m^3/s)	(días)	(m ³)	(m^2)	(cm)	(cm)	(m^3/m^2*dia)	
65.0000	0.0936	0.0000011	0.7296	0.068290313	0.1963494	50.0000	34.7800	0.47670	4.89E-07
150.6740	0.2170	0.0000025	0.3147	0.068290313	0.1963494	50.0000	34.7800	1.10502	1.13E-06
237.8121	0.3424	0.0000040	0.1994	0.068290313	0.1963494	50.0000	34.7800	1.74408	1.79E-06
336,1680	0.4841	0.0000056	0.1411	0.068290313	0.1963494	50.0000	34.7800	2.46541	2.53E-06
425.7734	0.6131	0.0000071	0.1114	0.068290313	0.1963494	50.0000	34.7800	3.12257	3.20E-06
502.9490	0.7242	0.0000084	0.0943	0.068290313	0.1963494	50.0000	34.7800	3.68856	3.79E-06
618.6400	0.8908	0.0000103	0.0767	0.068290313	0.1963494	50.0000	34.7800	4.53702	4.66E-06
692,3000	0.9969	0.0000115	0.0685	0.068290313	0.1963494	50.0000	34.7800	5.07724	5.21E-06
734.2400	1.0573	0.0000122	0.0646	0.068290313	0.1963494	50.0000	34.7800	5,38482	5.53E-06
755.1487	1.0874	0.0000126	0.0628	0.068290313	0.1963494	50.0000	34.7800	5.53816	5.68E-06
813.0081	1.1707	0.0000136	0.0583	0.068290313	0.1963494	50.0000	34.7800	5,96249	6.12E-06

Sedimentador Típico

Diámetro: 20 metros

Velocidad Ascencial: 1.3 m/h 31.2 m/día

Altura: 2.5 metros

Volumen: 3926.99 m³ Fr: 0.0000018405

Carga superficial tipica de 30 y 40 m³/m²*día

Cálculos para sedimentador de 1 metro de Diametro y 0.12 m de Alto

Flujos	Flujo	Flujos	TRH	Volumen	Area	Diametro	H Centro	Vo	Fr
(ml/min)	m³/día	(m^3/s)	(días)	(m ³)	(m^2)	(cm)	(cm)	(m³/m²*día)	
65.0000	0.0936	0.0000011	0.0015	0.098174688	0.7853975	100.0000	12.5000	0.11918	3.46E-07
150.6740	0.2170	0.0000025	0.0007	0.098174688	0.7853975	100.0000	12.5000	0.27626	8.02E-07
237.8121	0.3424	0.0000040	0.0004	0.098174688	0.7853975	100.0000	12.5000	0.43602	1.27E-06
336.1680	0.4841	0.0000056	0.0003	0.098174688	0.7853975	100.0000	12.5000	0.61635	1.79E-06
425.7734	0.6131	0.0000071	0.0002	0.098174688	0.7853975	100.0000	12.5000	0.78064	2.27E-06
502.9490	0.7242	0.0000084	0.0002	0.098174688	0.7853975	100.0000	12.5000	0.92214	2.68E-06
618.6400	0.8908	0.0000103	0.0002	0.098174688	0.7853975	100.0000	12.5000	1.13426	3.29E-06
692.3000	0.9969	0.0000115	0.0001	0.098174688	0.7853975	100.0000	12.5000	1.26931	3.68E-06
734.2400	1.0573	0.0000122	0.0001	0.098174688	0.7853975	100.0000	12.5000	1.34620	3.91E-06
755.1487	1.0874	0.0000126	0.0001	0.098174688	0.7853975	100.0000	12.5000	1.38454	4.02E-06
813.0081	1.1707	0.0000136	0.0001	0.098174688	0.7853975	100.0000	12.5000	1.49062	4.33E-06

Cálculos para sedimentador de 0.5 metros de Diametro y 0.34 m de Alto

Flujos	Flujo	Flujos	TRH	Volumen	Area	Diametro	H Centro	Vo	Fr
(ml/min)	m³/día	(m^3/s)	(días)	(m ³)	(m^2)	(cm)	(cm)	(m³/m²*día)	
65.0000	0.0936	0.0000011	0.2622	0.024543672	0.1963494	50.0000	12.5000	0.47670	4.89E-07
150.6740	0.2170	0.0000025	0.1131	0.024543672	0.1963494	50.0000	12.5000	1.10502	1.13E-06
237.8121	0.3424	0.0000040	0.0717	0.024543672	0.1963494	50.0000	12.5000	1.74408	1.79E-06
336.1680	0.4841	0.0000056	0.0507	0.024543672	0.1963494	50.0000	12.5000	2.46541	2.53E-06
425.7734	0.6131	0.0000071	0.0400	0.024543672	0.1963494	50.0000	12.5000	3.12257	3.20E-06
502.9490	0.7242	0.0000084	0.0339	0.024543672	0.1963494	50.0000	12.5000	3.68856	3.79E-06
618.6400	0.8908	0.0000103	0.0276	0.024543672	0.1963494	50.0000	12.5000	4.53702	4.66E-06
692.3000	0.9969	0.0000115	0.0246	0.024543672	0.1963494	50.0000	12.5000	5.07724	5.21E-06
734.2400	1.0573	0.0000122	0.0232	0.024543672	0.1963494	50.0000	12.5000	5.38482	5.53E-06
755.1487	1.0874	0.0000126	0.0226	0.024543672	0.1963494	50.0000	12.5000	5.53816	5.68E-06
813.0081	1.1707	0.0000136	0.0210	0.024543672	0.1963494	50.0000	12.5000	5.96249	6.12E-06

APÉNDICE

I

Fr:1.84050E-06

Carga superficial típica de 30 y 40 m³/m²*día

Fr:

1.84050E-06

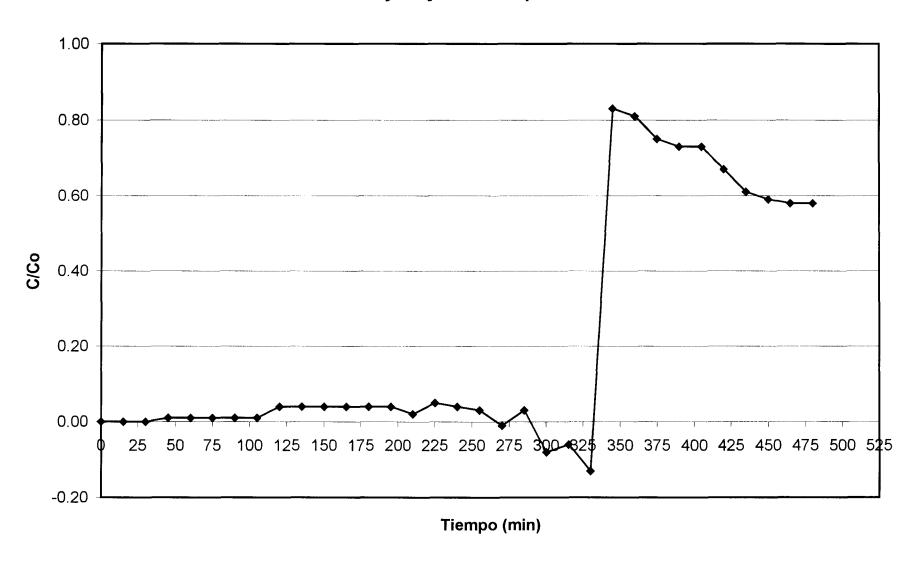
Carga superficial tipica de 30 y 40 m³/m²*día

Cálculos para sedimentador de 1 metro de Diametro y 0.15 m de Alto

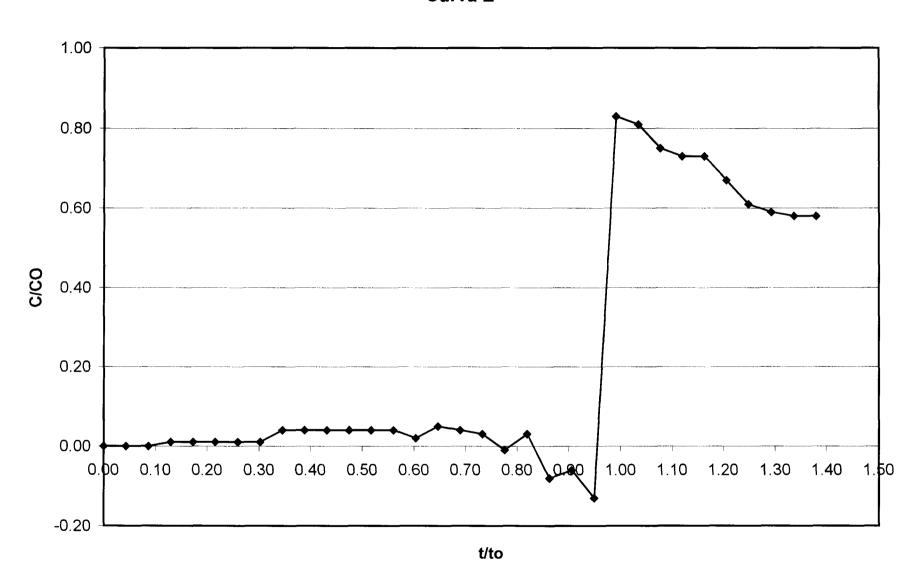
Flujos	Flujo	Flujos	TRH	TRH	Volumen	Area	Diametro	H Centro	Vo	Fr
(ml/min)	m³/día	(m^3/s)	(días)	(min)	(m^3)	(m^2)	(cm)	(cm)	$(m^3/m^2*día)$	
65.0000	0.0936	0.0000011	1.2586	1812.4558	0.1178096	0.7853975	100.0000	15.0000	0.11918	3.4594078513E-07
150.6740	0.2170	0.0000025	0.5430	781.8842	0.1178096	0.7853975	100.0000	15.0000	0.27626	8.0191202859E-07
237.8121	0.3424	0.0000040	0.3440	495.3895	0.1178096	0.7853975	100.0000	15.0000	0.43602	1.2656754552E-06
336.1680	0.4841	0.0000056	0.2434	350.4487	0.1178096	0.7853975	100.0000	15.0000	0.61635	1.7891418747E-06
425.7734	0.6131	0.0000071	0.1921	276.6956	0.1178096	0.7853975	100.0000	15.0000	0.78064	2.2660366813E-06
502.9490	0.7242	0.0000084	0.1627	234.2377	0.1178096	0.7853975	100.0000	15.0000	0.92214	2.6767780298E-06
618.6400	0.8908	0.0000103	0.1322	190.4332	0.1178096	0.7853975	100.0000	15.0000	1.13426	3.2925047279E-06
692.3000	0.9969	0.0000115	0.1182	170.1713	0.1178096	0.7853975	100,0000	15.0000	1.26931	3.6845354699E-06
734.2400	1.0573	0.0000122	0.1114	160.4511	0.1178096	0.7853975	100.0000	15.0000	1.34620	3.9077471088E-06
755.1487	1.0874	0.0000126	0.1083	156.0085	0.1178096	0.7853975	100.0000	15.0000	1.38454	4.0190266795E-06
813.0081	1.1707	0.0000136	0.1006	144.9058	0.1178096	0.7853975	100.0000	15.0000	1.49062	4.3269640066E-06

APÉNDICE

J


Prueba de sal como trazador

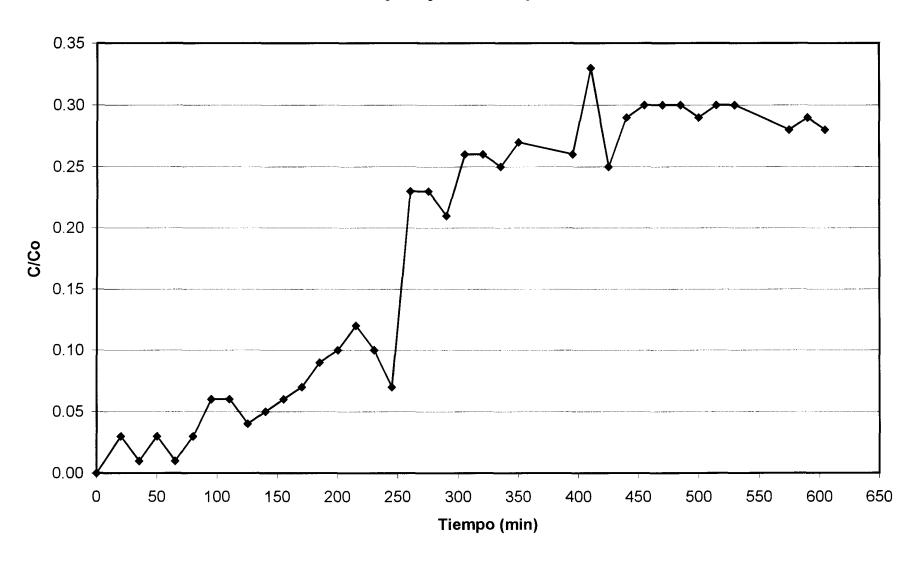
12 g de NaCl 4 L de agua


Inicio de inyección de trazador: 9:38
Término de inyección de trazador: 9:50
Conductividad: 6.70
Temperatura: 25.00

Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/Co
•		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	1.79	25.7	25	23	0.00	0.00
15	1.79	25.7	25	23	0.04	0.00
30	1.79	25.7	25	23	0.09	0.00
45	1.80	25.7	25	23	0.13	0.01
60	1.80	25.7	25	23	0.17	0.01
75	1.80	25.7	25	23	0.22	0.01
90	1.80	25.8	25	23	0.26	0.01
105	1.80	25.8	25	23	0.30	0.01
120	1.83	25.9	25	24	0.34	0.04
135	1.83	25.9	25	24	0.39	0.04
150	1.83	25.7	25	24	0.43	0.04
165	1.83	25.7	25	24	0.47	0.04
180	1.83	25.7	25	24	0.52	0.04
195	1.83	25.7	25	24	0.56	0.04
210	1.81	25.6	25	24	0.60	0.02
225	1.84	25.6	25	24	0.65	0.05
240	1.83	25.6	25	24	0.69	0.04
255	1.82	25.7	25	24	0.73	0.03
270	1.78	25.9	25	24	0.78	-0.01
285	1.82	26.1	25	24	0.82	0.03
300	1.71	26.2	25	24	0.86	-0.08
315	1.73	26.4	25	24	0.91	-0.06
330	1.66	26.4	25	24	0.95	-0.13
345	2.62	26.4	25	24	0.99	0.83
360	2.60	26.3	25	24	1.03	0.81
375	2.54	26.3	25	24	1.08	0.75
390	2.52	26.2	25	24	1.12	0.73
405	2.52	26.0	25	24	1.16	0.73
420	2.46	26.0	25	24	1.21	0.67
435	2.40	26.0	25	24	1.25	0.61
450	2.38	26.0	25	24	1.29	0.59
465	2.37	26.0	25	24	1.34	0.58
480	2.37	26.0	25	24	1.38	0.58

Prueba de conductividad con sal Flujo bajo sin mampara

Curva E



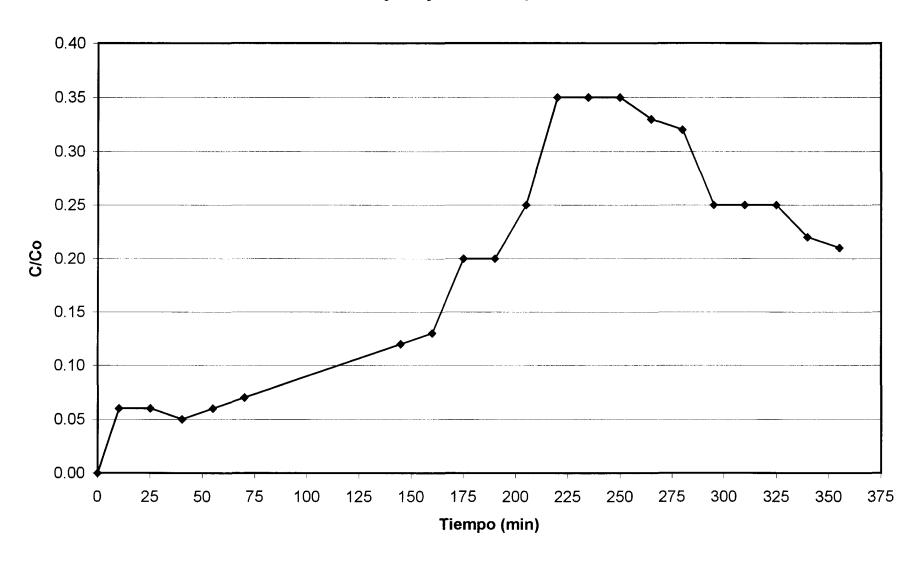
12 g de NaCl 4 L de agua

Inicio de inyección de trazador:	10:15	
Término de inyección de trazador:	10:27	
Conductividad:	6.4	
Temperatura:	25.3	

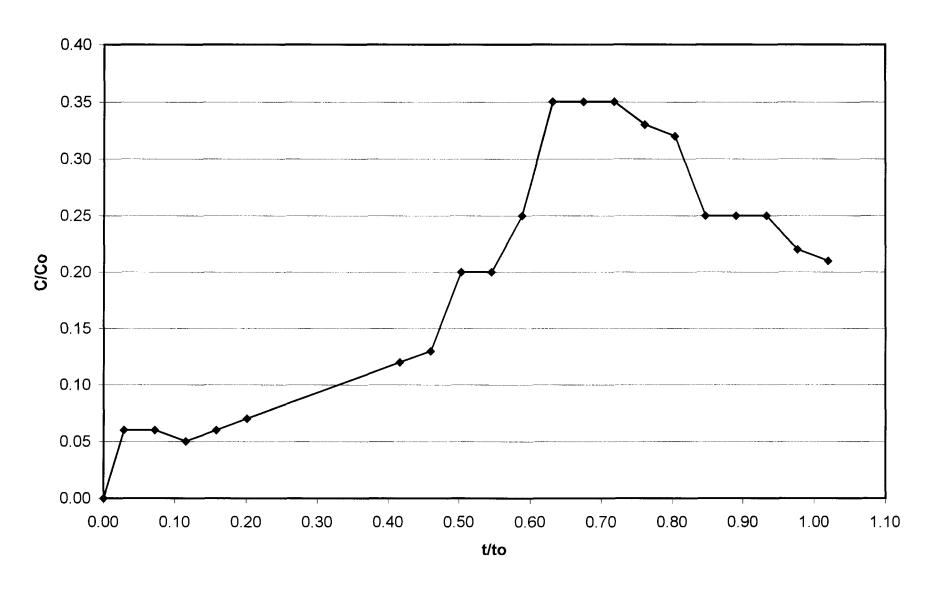
Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
		Sedimentador	Laboratorio	Exterior		
min	mS	°C	္ခ	°C		
0	1.03	25.3	25	22	0.00	0.00
20	1.06	25.3	25	22	0.06	0.03
35	1.04	25.3	25	22	0.10	0.01
50	1.06	25.4	25	22	0.14	0.03
65	1.04	25.4	25	22	0.19	0.01
80	1.06	25.4	25	23	0.23	0.03
95	1.09	25.4	25	23	0.27	0.06
110	1.09	25.4	25	23	0.32	0.06
125	1.07	25.4	25	23	0.36	0.04
140	1.08	25.5	25	23	0.40	0.05
155	1.09	25.4	25	24	0.45	0.06
170	1.10	25.5	25	24	0.49	0.07
185	1.12	25.6	25	24	0.53	0.09
200	1.13	25.6	25	24	0.57	0.10
215	1.15	25.7	25	24	0.62	0.12
230	1.13	25.7	25	24	0.66	0.10
245	1.10	25.7	25	24	0.70	0.07
260	1.26	25.8	25	24	0.75	0.23
275	1.26	25.7	25	24	0.79	0.23
290	1.24	25.7	25	25	0.83	0.21
305	1.29	25.8	25	25	0.88	0.26
320	1.29	25.7	26	26	0.92	0.26
335	1.28	25.6	26	26	0.96	0.25
350	1.30	25.6	26	26	1.01	0.27
395	1.29	25.6	25	26	1.14	0.26
410	1.36	25.6	25	26	1.18	0.33
425	1.28	25.7	25	26	1.22	0.25
440	1.32	25.7	25	26	1.26	0.29
455	1.33	25.7	25	26	1.31	0.30
470	1.33	25.6	26	26	1.35	0.30
485	1.33	25.6	26	26	1.39	0.30
500	1.32	25.7	26	24	1.44	0.29
515	1.33	25.7	26	24	1.48	0.30
530	1.33	25.6	25	24	1.52	0.30
575	1.31	25.4	25	25	1.65	0.28
590	1.32	25.5	25	25	1.70	0.29
605	1.31	25.5	25	25	1.74	0.28

Prueba de conductividad con sal Flujo bajo sin mampara

Curva E



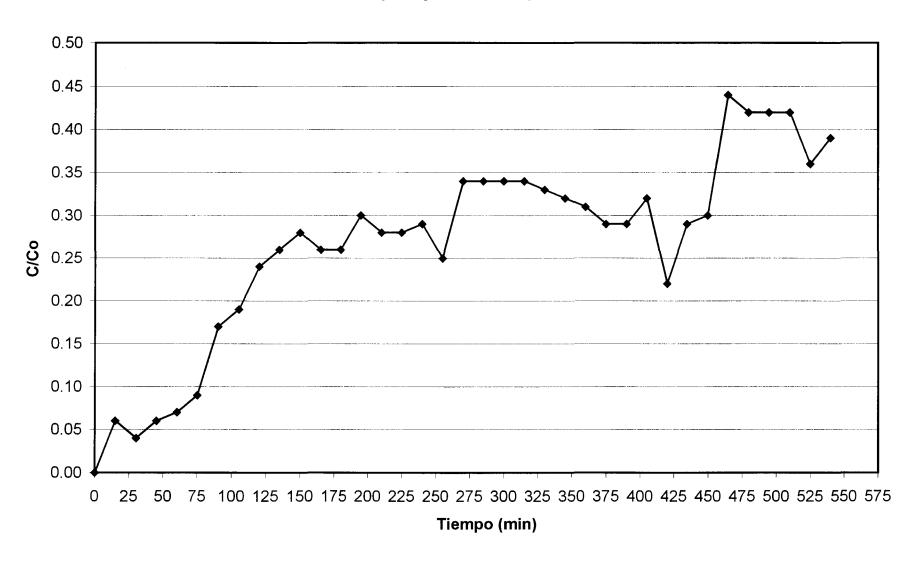
12 g de NaCl 4 L de agua


Inicio de inyección de trazador: 8:50
Término de inyección de trazador: 9:02
Conductividad: 8.3
Temperatura: 25.6

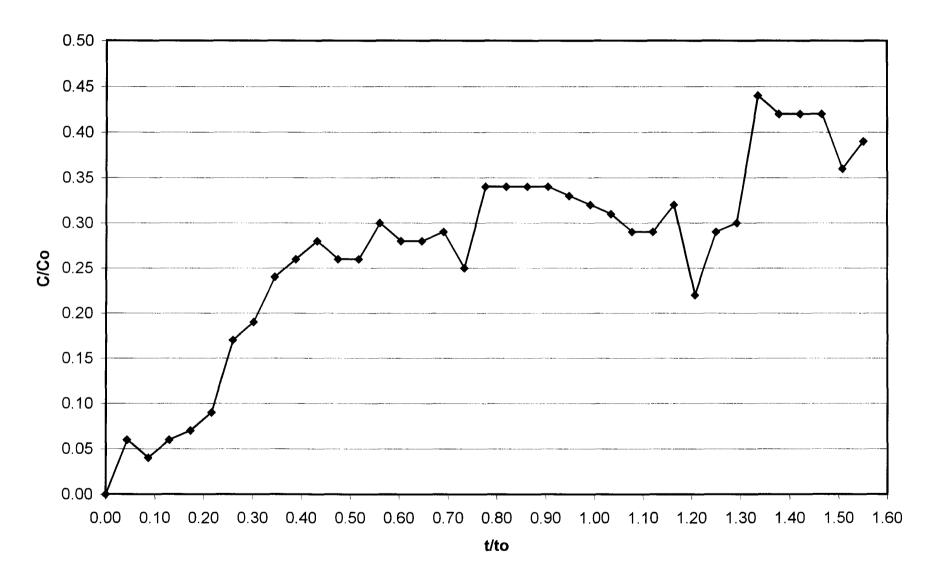
Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	1.25	25.6	25	23	0.00	0.00
10	1.31	25.5	25	23	0.03	0.06
25	1.31	25.5	25	23	0.07	0.06
40	1.30	25.5	25	23	0.11	0.05
55	1.31	25.5	25	23	0.16	0.06
70	1.32	25.5	25	24	0.20	0.07
145	1.37	25.5	26	27	0.42	0.12
160	1.38	25.5	26	27	0.46	0.13
175	1.45	25.6	26	27	0.50	0.20
190	1.45	25.6	26	27	0.55	0.20
205	1.50	25.4	26	27	0.59	0.25
220	1.60	25.4	26	27	0.63	0.35
235	1.60	25.4	26	27	0.68	0.35
250	1.60	25.5	26	27	0.72	0.35
265	1.58	25.7	26	30	0.76	0.33
280	1.57	25.7	26	30	0.80	0.32
295	1.50	25.7	26	30	0.85	0.25
310	1.50	25.8	26	30	0.89	0.25
325	1.50	25.8	26	30	0.93	0.25
340	1.47	25.9	26	30	0.98	0.22
355	1.46	26.0	26	30	1.02	0.21

Prueba de conductividad con sal Flujo bajo sin mampara

Curva E



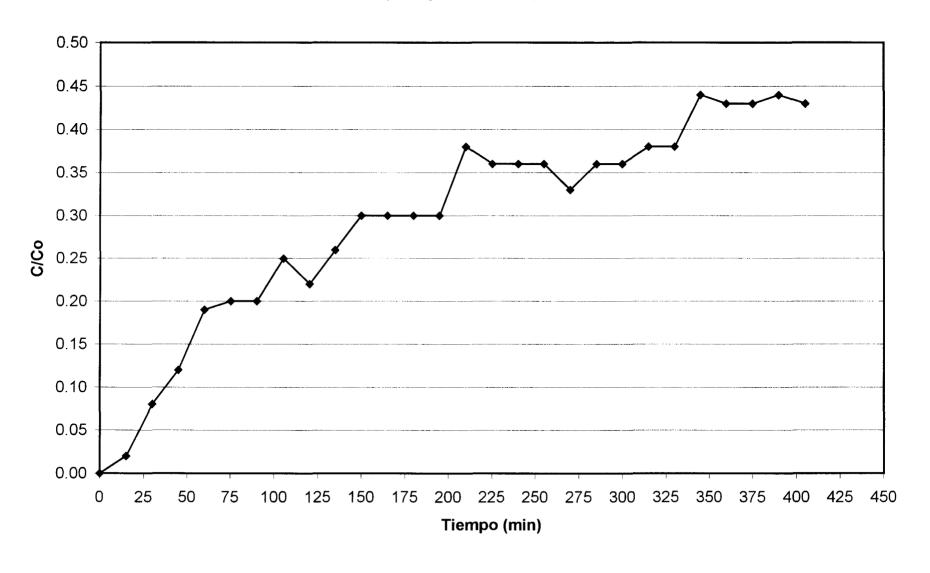
12 g de NaCl 4 L de agua


Inicio de inyección de trazador: 8:55
Término de inyección de trazador: 9:07
Conductividad: 10.2
Temperatura: 26.4

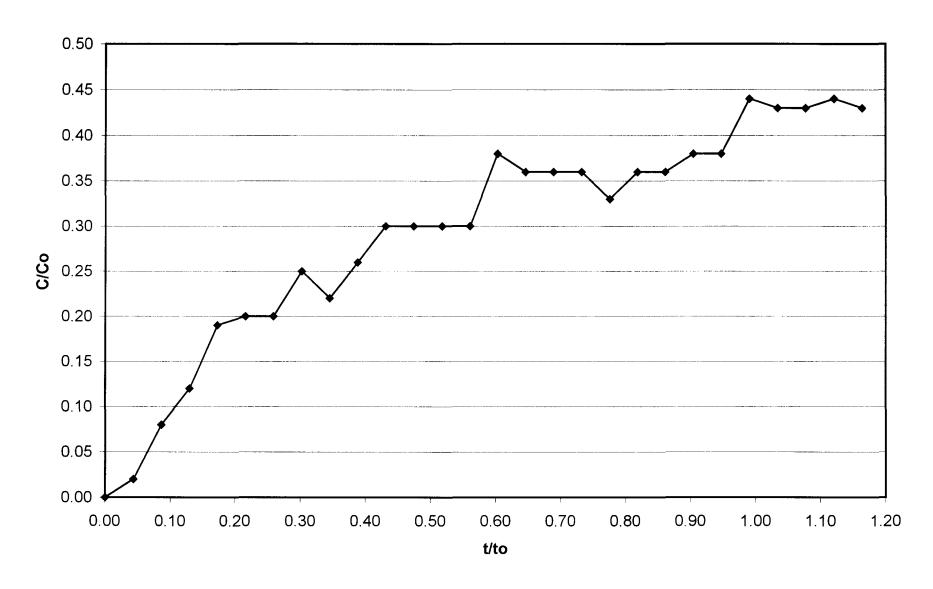
Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
•		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	1.34	26.3	26		0.00	0.00
15	1.40	26.3	26	-	0.04	0.06
30	1.38	26.1	26		0.09	0.04
45	1.40	26.1	26		0.13	0.06
60	1.41	26.2	26		0.17	0.07
75	1.43	26.3	26		0.22	0.09
90	1.51	26.4	26		0.26	0.17
105	1.53	26.4	26		0.30	0.19
120	1.58	26.7	26	24	0.34	0.24
135	1.60	27.0	26	24	0.39	0.26
150	1.62	27.0	26	24	0.43	0.28
165	1.60	27.0	26	24	0.47	0.26
180	1.60	27.2	26	25	0.52	0.26
195	1.64	27.3	26	25	0.56	0.3
210	1.62	27.3	26	25	0.60	0.28
225	1.62	27.4	27	25	0.65	0.28
240	1.63	27.5	27	25	0.69	0.29
255	1.59	27.5	27	25	0.73	0.25
270	1.68	27.4	27	25	0.78	0.34
285	1.68	27.3	27	25	0.82	0.34
300	1.68	27.2	27	27	0.86	0.34
315	1.68	27.1	27	27	0.91	0.34
330	1.67	27.2	27	27	0.95	0.33
345	1.66	27.4	27	27	0.99	0.32
360	1.65	27.6	27	27	1.03	0.31
375	1.63	27.7	27	27	1.08	0.29
390	1.63	27.7	27	27	1.12	0.29
405	1.66	27.8	27	27	1.16	0.32
420	1.56	27.8	27	27	1.21	0.22
435	1.63	27.0	27	27	1.25	0.29
450	1.64	27.0	27	27	1.29	0.3
465	1.78	27.3	27	27	1.34	0.44
480	1.76	27.2	27	27	1.38	0.42
495	1.76	27.1	27	27	1.42	0.42
510	1.76	27.2	27	27	1.47	0.42
525	1.70	27.4	27	27	1.51	0.36
540	1.73	27.4	27	27	1.55	0.39

Prueba de conductividad con sal Flujo bajo con mampara

Curva E



12 g de NaCl 4 L de agua


Inicio de inyección de trazador: 9:35
Término de inyección de trazador: 9:47
Conductividad: 5.87
Temperatura: 26.9

Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	0.92	26.9	26	21	0.00	0.00
15	0.94	26.9	26	21	0.04	0.02
30	1.00	26.8	26	21	0.09	0.08
45	1.04	26.7	26	21	0.13	0.12
60	1.11	26.5	26	21	0.17	0.19
75	1.12	26.4	26	21	0.22	0.20
90	1.12	26.4	26	22	0.26	0.20
105	1.17	26.4	26	22	0.30	0.25
120	1.14	26.4	26	22	0.34	0.22
135	1.18	26.1	26	23	0.39	0.26
150	1.22	26.0	26	23	0.43	0.30
165	1.22	26.0	26	23	0.47	0.30
180	1.22	26.0	26	23	0.52	0.30
195	1.22	26.1	26	23	0.56	0.30
210	1.30	26.1	26	23	0.60	0.38
225	1.28	26.1	27	23	0.65	0.36
240	1.28	26.1	27	23	0.69	0.36
255	1.28	26.1	27	23	0.73	0.36
270	1.25	26.0	27	28	0.78	0.33
285	1.28	26.2	27	28	0.82	0.36
300	1.28	26.5	27	28	0.86	0.36
315	1.30	26.4	27	28	0.91	0.38
330	1.30	26.4	27	28	0.95	0.38
345	1.36	26.4	27	28	0.99	0.44
360	1.35	26.4	27	28	1.03	0.43
375	1.35	26.3	27	28	1.08	0.43
390	1.36	26.3	27	28	1.12	0.44
405	1.35	26.4	27	28	1.16	0.43

Prueba de conductividad con sal Flujo bajo con mampara

Curva E

12 g de NaCl 4 L de agua

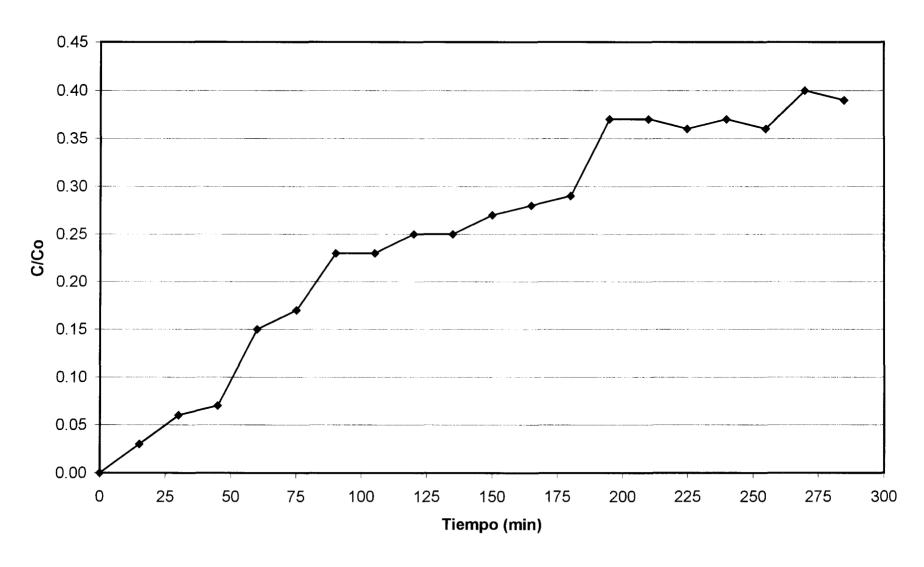
Inicio de inyección de trazador:

11:00

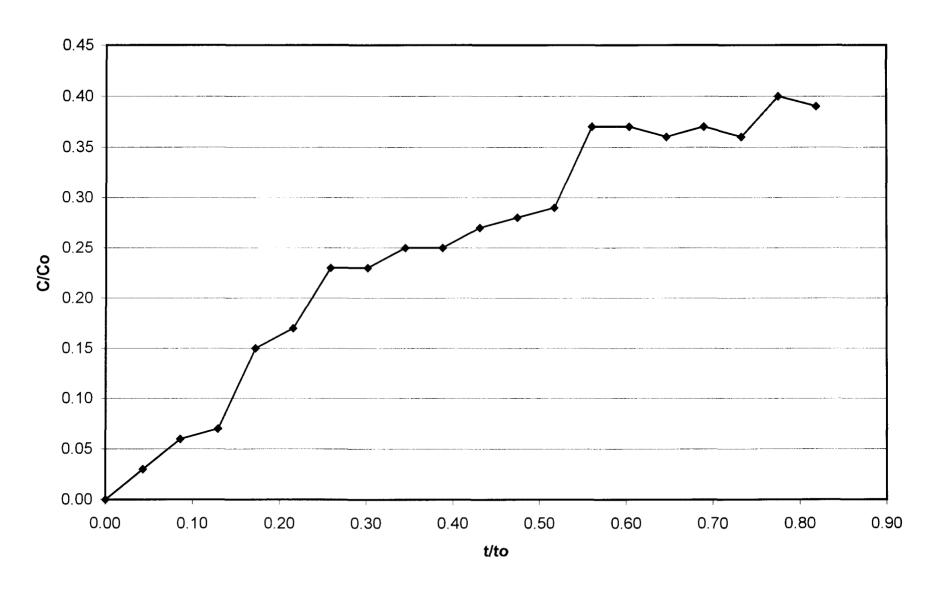
Término de inyección de trazador:

11:12

Conductividad:


0

Temperatura:

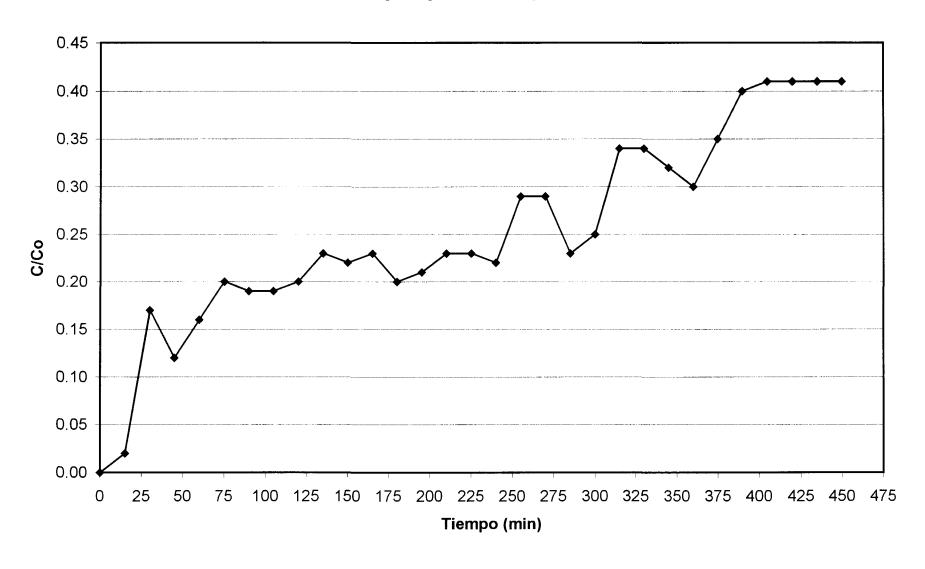

26.6

Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
·		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	1.21	26.6	26	25	0.00	0.00
15	1.24	26.5	26	25	0.04	0.03
30	1.27	26.4	26	25	0.09	0.06
45	1.28	26.3	26	25	0.13	0.07
60	1.36	26.3	26	25	0.17	0.15
75	1.38	26.3	26	25	0.22	0.17
90	1.44	26.3	26	26	0.26	0.23
105	1.44	26.4	26	26	0.30	0.23
120	1.46	26.3	26	26	0.34	0.25
135	1.46	26.2	26	26	0.39	0.25
150	1.48	26.2	26	26	0.43	0.27
165	1.49	26.3	26	26	0.47	0.28
180	1.50	26.3	26	26	0.52	0.29
195	1.58	26.3	26	26	0.56	0.37
210	1.58	26.3	26	26	0.60	0.37
225	1.57	26.3	26	26	0.65	0.36
240	1.58	26.4	26	26	0.69	0.37
255	1.57	26.4	26	26	0.73	0.36
270	1.61	26.4	26	26	0.78	0.40
285	1.60	26.4	26	26	0.82	0.39

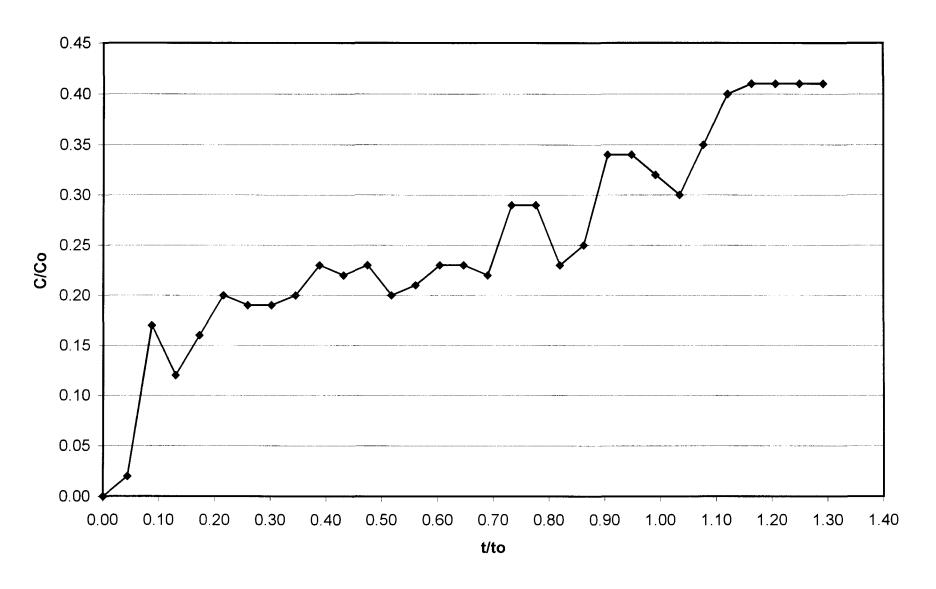
Prueba de conductividad con sal Flujo bajo con mampara

Curva E

Prueba de sal


12 g de NaCl 4 L de agua

Inicio de inyección de trazador: 9:20
Término de inyección de trazador: 2:32
Conductividad: 9.48
Temperatura: 27.1
Densidad: 1.004

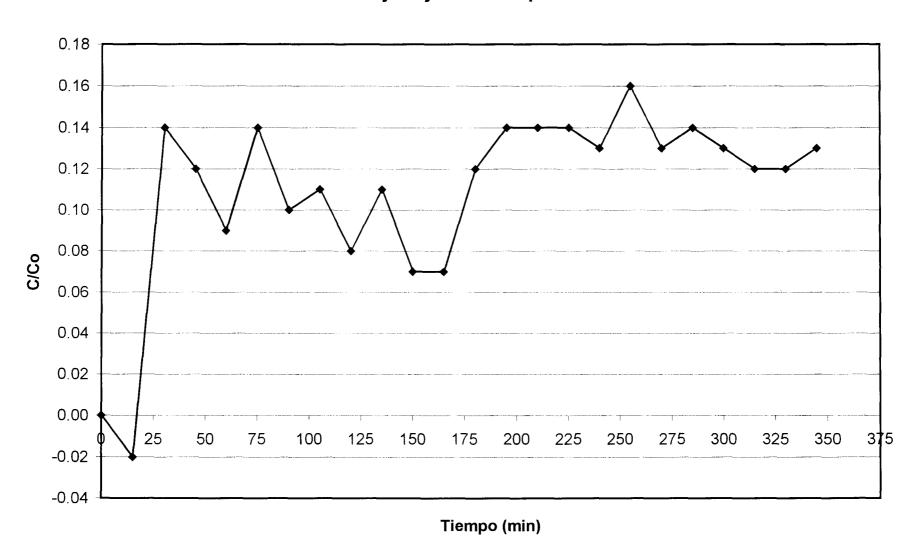

Esta prueba se realizó con la nueva configuración de tubo de entrada y sin rastra.

Tiempo	Conductividad	Temperatura	Temperatura	Temperatura	t/t0	C/C0
•		Sedimentador	Laboratorio	Exterior		
min	mS	°C	°C	°C		
0	1.44	27.1	27	-	0.00	0.00
15	1.46	27.1	27		0.04	0.02
30	1.61	26.7	27		0.09	0.17
45	1.56	26.7	27		0.13	0.12
60	1.60	26.7	27	27	0.17	0.16
75	1.64	26.5	27	27	0.22	0.20
90	1.63	26.3	27	27	0.26	0.19
105	1.63	26.3	27	29	0.30	0.19
120	1.64	26.3	27	29	0.34	0.20
135	1.67	26.1	27	29	0.39	0.23
150	1.66	26.2	27	29	0.43	0.22
165	1.67	26.4	27	29	0.47	0.23
180	1.64	26.1	27	29	0.52	0.20
195	1.65	26.1	27	29	0.56	0.21
210	1.67	26.2	27	29	0.60	0.23
225	1.67	26.3	27	29	0.65	0.23
240	1.66	26.4	27	29	0.69	0.22
255	1.73	26.4	27	29	0.73	0.29
270	1.73	26.4	27	29	0.78	0.29
285	1.67	26.9	27	31	0.82	0.23
300	1.69	27.1	27	31	0.86	0.25
315	1.78	27.1	27	31	0.91	0.34
330	1.78	27.1	27	31	0.95	0.34
345	1.76	27.2	27	31	0.99	0.32
360	1.74	27.2	27	31	1.03	0.30
375	1.79	27.2	27	31	1.08	0.35
390	1.84	26.6	27	31	1.12	0.40
405	1.85	26.6	27	31	1.16	0.41
420	1.85	26.7	27	31	1.21	0.41
435	1.85	26.9	27	31	1.25	0.41
450	1.85	27.0	27	31	1.29	0.41

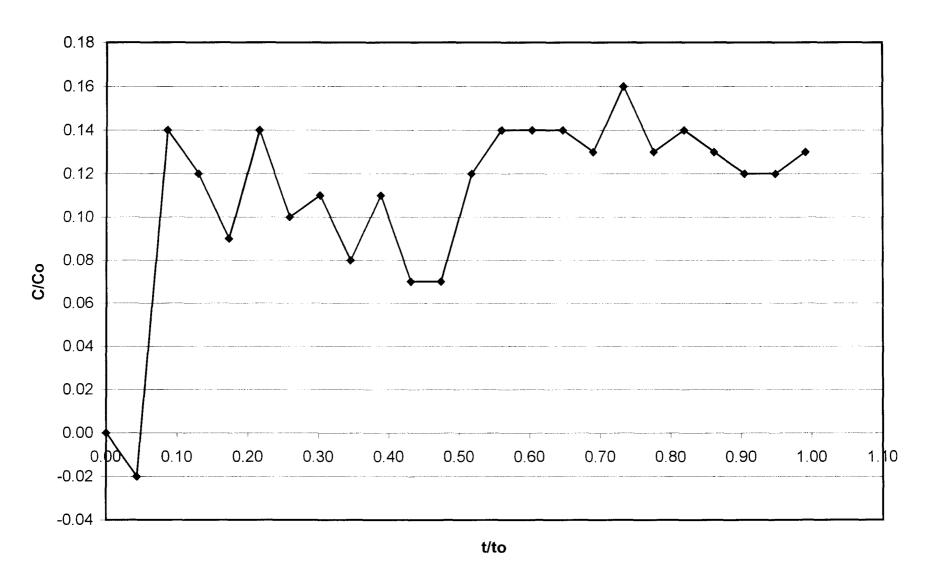
Prueba de conductividad con sal Flujo bajo con mampara

Curva E

Prueba de sal


12 g de NaCl 4 L de agua

Inicio de inyección de trazador:9:20Término de inyección de trazador:2:32Conductividad:11.42Temperatura:28.2Densidad:1.002


Esta prueba se realizó con la nueva configuración de tubo de entrada y sin rastra.

Tiempo	Conductividad	Temperatura Sedimentador	Temperatura Laboratorio	Temperatura Exterior	t/t0	C/C0
min	mS	°C	°C	°C		
0	1.80	28.1	27		0.00	0.00
15	1.78	28.1	27		0.04	-0.02
30	1.94	28.1	27		0.09	0.14
45	1.92	27.7	27		0.13	0.12
60	1.89	27.7	27		0.17	0.09
75	1.94	27.8	27		0.22	0.14
90	1.90	27.7	27		0.26	0.10
105	1.91	28.0	27		0.30	0.11
120	1.88	28.1	27		0.34	0.08
135	1.91	28.2	27		0.39	0.11
150	1.87	28.3	27		0.43	0.07
165	1.87	28.4	27		0.47	0.07
180	1.92	28.5	27		0.52	0.12
195	1.94	28.5	27		0.56	0.14
210	1.94	28.5	27		0.60	0.14
225	1.94	28.5	27		0.65	0.14
240	1.93	28.5	27		0.69	0.13
255	1.96	28.3	27		0.73	0.16
270	1.93	28.6	27		0.78	0.13
285	1.94	28.3	27		0.82	0.14
300	1.93	28.1	27	,	0.86	0.13
315	1.92	28.3	27		0.91	0.12
330	1.92	29.0	27		0.95	0.12
345	1.93	28.7	27		0.99	0.13

Prueba de conductividad con sal Flujo bajo con mampara

Curva E

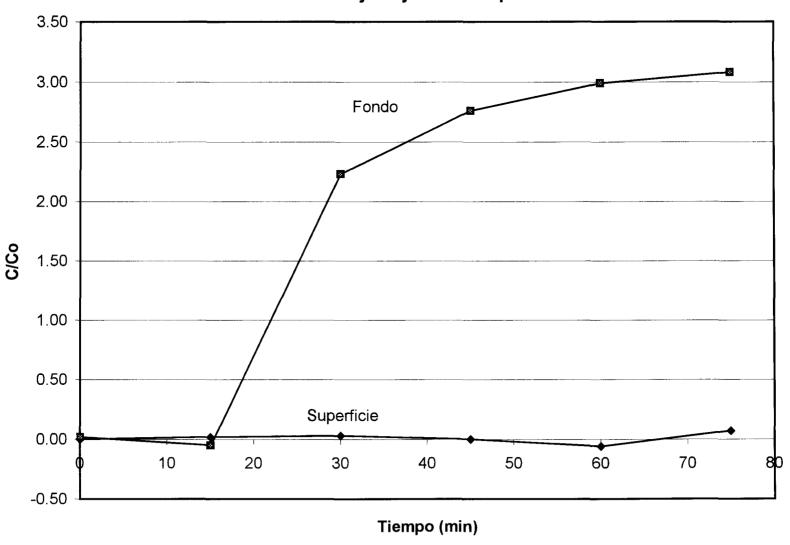
Prueba de sal

12 g de NaCl 4 L de agua

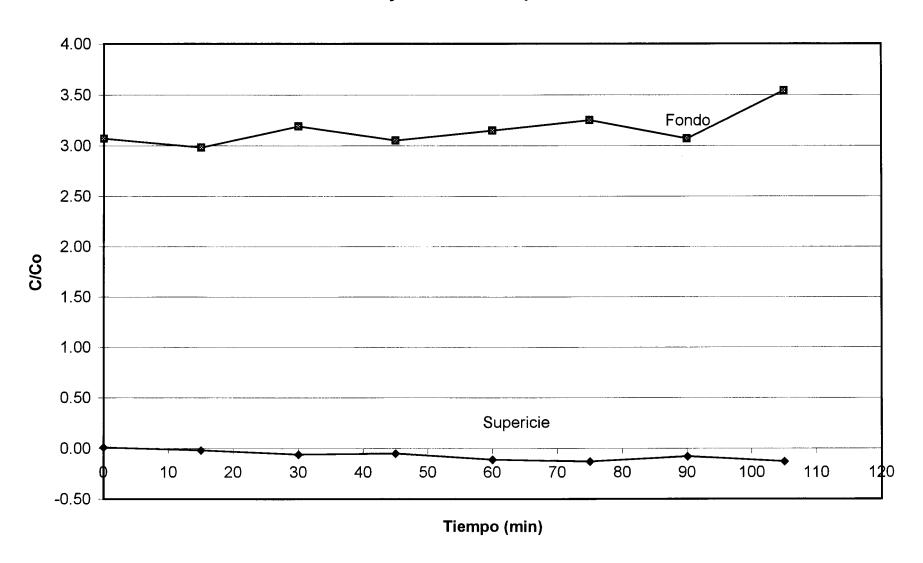
Inicio de inyección de trazador: 9:20 Término de inyección de trazador: 2:32

Conductividad

Temperatura: 28.9


Esta prueba se realizó con la nueva configuración de tubo de entrada y sin rastra.

Tiempo	Conductividad Superficie	Conductividad Fondo	Temperatura Agua Sedimentador	Temperatura Laboratorio
min	mS	mS	°C	°C
0	2.28	2.30	28.9	28
15	2.30	2.23	28.5	28
30	2.31	4.51	27.9	28
45	2.28	5.04	28.0	28
60	2.22	5.27	28.1	28
75	2.35	5.36	28.2	28


Aumento del flujo a velocidad 8 de la bomba

Tiempo	Conductividad Superficie	Conductividad Fondo	Temperatura Agua Sedimentador	Temperatura Laboratorio
min	mS	mS	°C	°C
0	2.29	5.35	28.2	28
15	2.26	5.26	28.5	28
30	2.22	5.47	28.8	28
45	2.23	5.33	29.0	28
60	2.17	5.43	28.8	28
75	2.15	5.53	29.0	28
90	2.20	5.35	29.1	28
105	2.15	5.82	29.3	28

Prueba de conductividad con sal Flujo bajo sin mampara

Prueba de conductividad con sal Flujo alto sin mampara

APÉNDICE K

Pruebas de cloro como trazador

Prueba de cloro

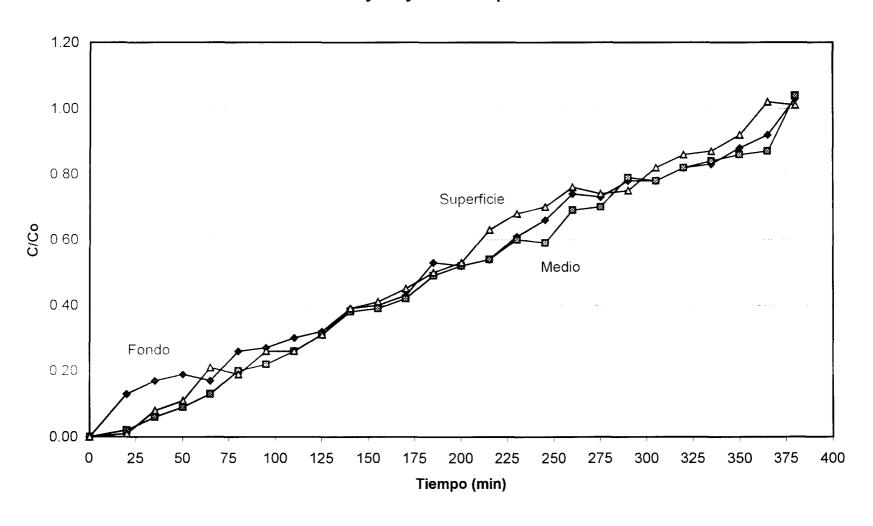
35 ml de hipoclorito en 4 L de agua Inicio de inyección de trazador:
Término de inyección de trazador:

11:15 11:27

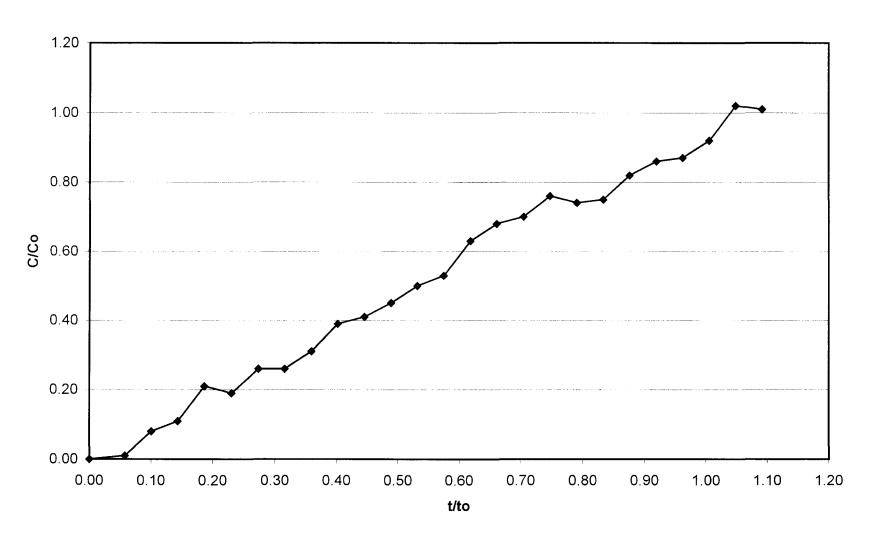
Densidad:

0.999 g/L

Conductividad:


4.62

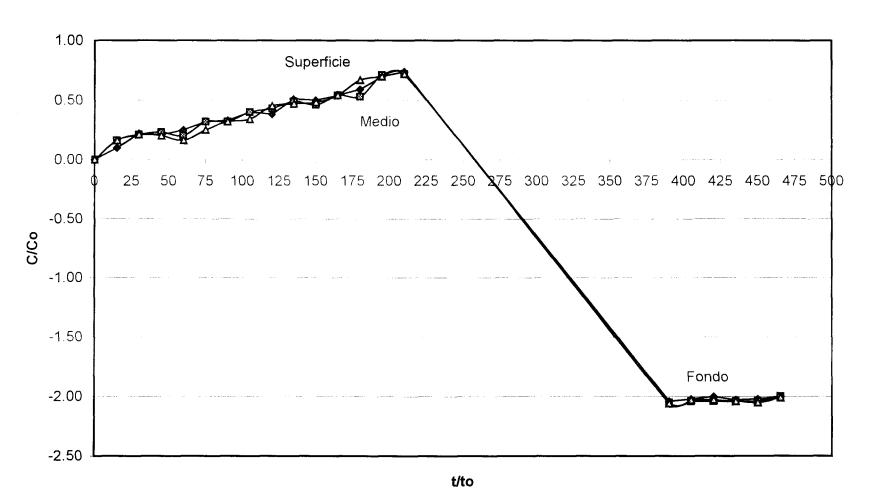
.3


Temperatura	29.3

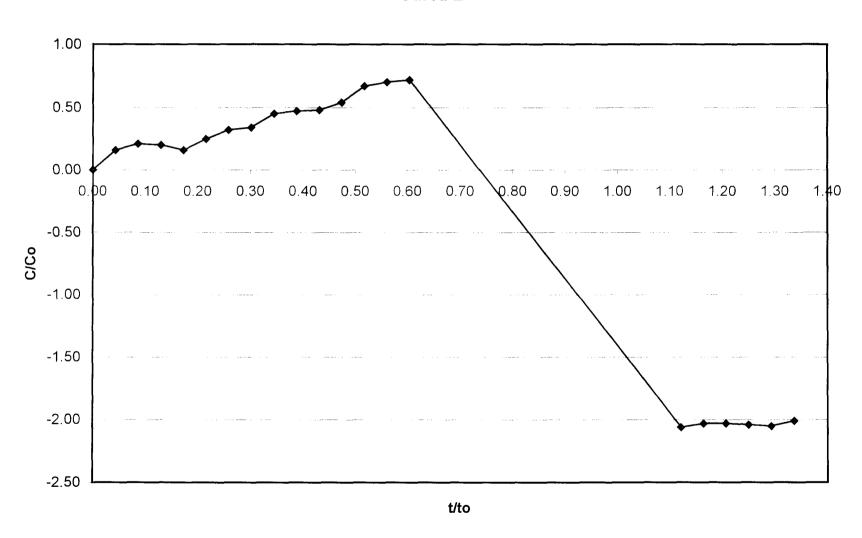
Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
1	Fondo	Media	Superficie	H1	H2	H3	Laboratorio		}
min	mS	mS	mS	°C	°C	°C	°C		
0	2.07	2.08	2.07	29.3	29.3	29.3	29	0.00	0.00
20	2.20	2.10	2.08	29.0	29.1	29.1	29	0.06	0.01
35	2.24	2.14	2.15	29.0	29.0	29.0	29	0.10	0.08
50	2.26	2.17	2.18	28.9	29.0	29.0	29	0.14	0.11
65	2.24	2.21	2.28	29.0	29.0	29.0	29	0.19	0.21
80	2.33	2.28	2.26	28.7	28.9	28.9	29	0.23	0.19
95	2.34	2.30	2.33	28.5	28.6	28.5	29	0.27	0.26
110	2.37	2.34	2.33	28.3	28.5	28.5	29	0.32	0.26
125	2.39	2.39	2.38	28.4	28.4	28.6	29	0.36	0.31
140	2.46	2.46	2.46	28.1	28.4	28.4	29	0.40	0.39
155	2.47	2.47	2.48	28.1	28.4	28.5	29	0.45	0.41
170	2.50	2.50	2.52	28.1	28.2	28.3	29	0.49	0.45
185	2.60	2.57	2.57	28.3	28.5	28.6	29	0.53	0.50
200	2.59	2.60	2.60	28.4	28.5	28.6	29	0.57	0.53
215	2.61	2.62	2.70	28.3	28.4	28.6	29	0.62	0.63
230	2.68	2.68	2.75	28.4	28.5	28.5	29	0.66	0.68
245	2.73	2.67	2.77	28.4	28.6	28.5	29	0.70	0.70
260	2.81	2.77	2.83	28.2	28.4	28.5	29	0.75	0.76
275	2.80	2.78	2.81	28.3	28.5	28.6	29	0.79	0.74
290	2.85	2.87	2.82	28.1	28.4	28.4	29	0.83	0.75
305	2.85	2.86	2.89	28.1	28.3	28.4	29	0.88	0.82
320	2.89	2.90	2.93	28.4	28.6	28.6	29	0.92	0.86
335	2.90	2.92	2.94	28.5	28.7	28.7	29	0.96	0.87
350	2.95	2.94	2.99	28.6	28.7	28.8	29	1.01	0.92
365	2.99	2.95	3.09	28.5	28.7	28.8	29	1.05	1.02
380	3.10	3.12	3.08	28.5	28.7	28.8	29	1.09	1.01

Prueba de conductividad con hipoclorito Flujo bajo sin mampara

Curva E


Prueba de cloro

10 ml de hipoclorito en 4 L de agua

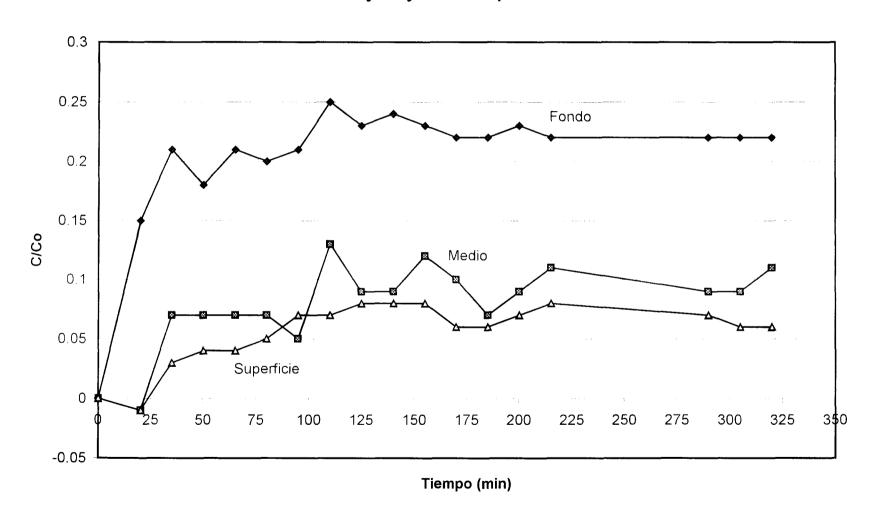

Inicio de inyección de trazador: 10:05
Término de inyección de trazador: 10:17
Densidad: 1 g/L
Conductividad: 4.45
Temperatura: 28.3

Tiempo	Conductividad Fondo	Conductividad Media	Conductividad Superficie	H1	Temperatura H2	H3	Temperatura Laboratorio	t/t0
min	mS	mS	mS	°C	°C	°C	°C	
0	2.97	2.98	2.98	28.6	28.6	28.6	28	0.00
15	3.07	3.14	3.14	27.6	27.8	27.9	28	0.04
30	3.19	3.19	3.19	27.5	27.5	27.5	28	0.09
45	3.18	3.21	3.18	27.4	27.6	27.6	28	0.13
60	3.22	3.18	3.14	27.5	27.7	27.8	28	0.17
75	3.29	3.30	3.23	27.3	27.5	27.5	28	0.22
90	3.30	3.30	3.30	27.3	27.4	27.5	28	0.26
105	3.37	3.38	3.32	27.4	27.6	27.6	28	0.30
120	3.35	3.41	3.43	27.6	27.7	27.7	28	0.34
135	3.48	3.47	3.45	27.6	27.7	27.8	28	0.39
150	3.47	3.44	3.46	27.6	27.7	27.8	28	0.43
165	3.51	3.52	3.52	27.7	27.8	27.8	28	0.47
180	3.56	3.51	3.65	27.4	27.5	27.7	28	0.52
195	3.67	3.69	3.68	27.6	27.7	27.7	27	0.56
210	3.71	3.70	3.70	27.5	27.4	27.4	27	0.60
390	0.93	0.93	0.92	27.5	27.4	27.5	27	1.12
405	0.95	0.94	0.95	27.0	27.1	27.1	27	1.16
420	0.97	0.94	0.95	27.0	27.1	27.1	27	1.21
435	0.94	0.94	0.94	27.0	27.1	27.1	27	1.25
450	0.95	0.94	0.93	26.9	27.0	27.0	27	1.29
465	0.97	0.98	0.97	26.9	27.0	27.0	27	1.34

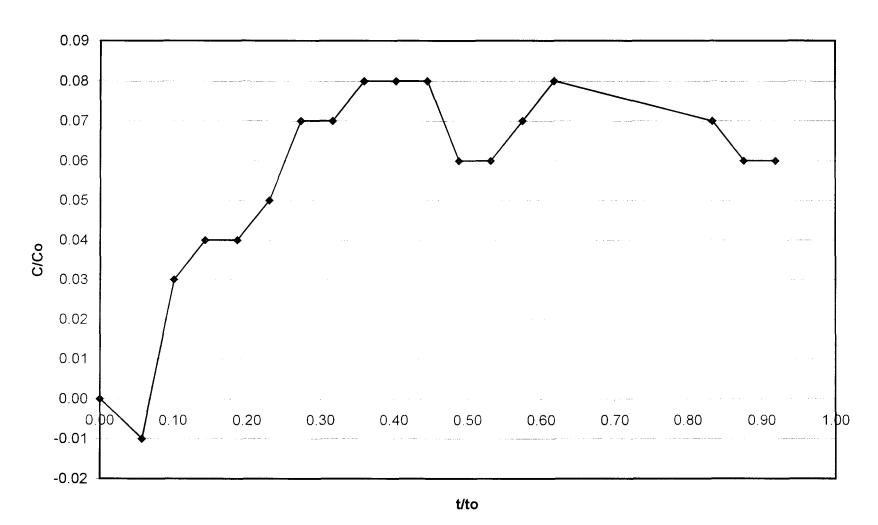
Prueba de conductividad con hipoclorito Flujo bajo sin mampara

Curva E

Prueba de cloro


100 ml de hipoclorito en 6 L de agua

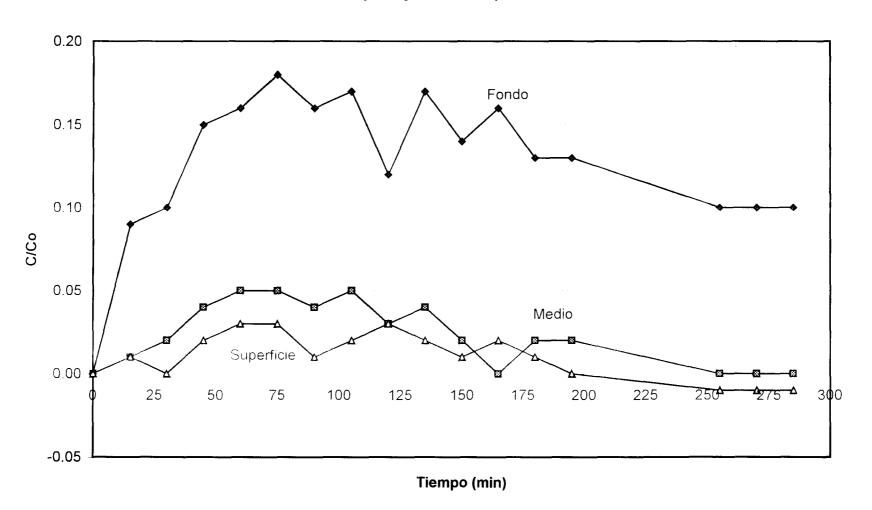
Inicio de inyección de trazador: 10:30
Término de inyección de trazador: 10:31
Densidad: 1 g/L
Conductividad: 3.61
Temperatura: 27


Prueba con aumento de flujo a velocidad 10 de la bomba

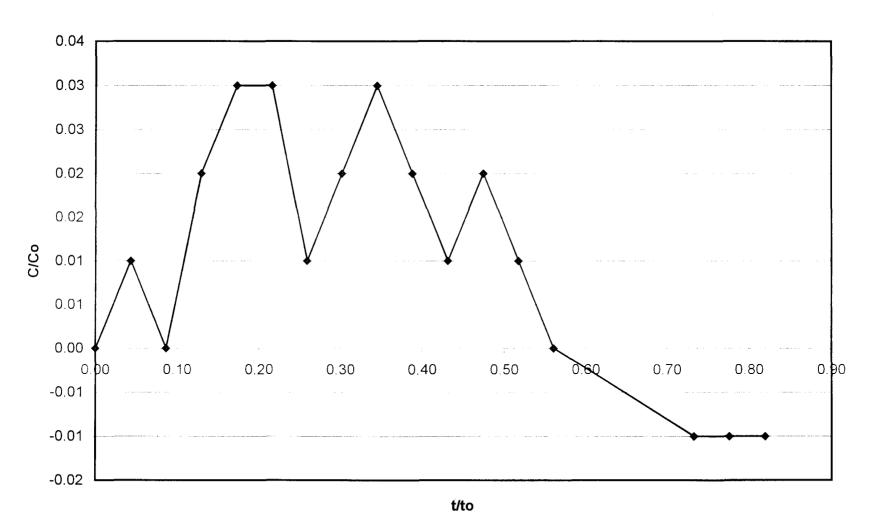
Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
	Fondo	Media	Superficie	H1	H2	Н3	Laboratorio		
min	mS	mS	mS	°C	°C	°C	°C		
0	0.92	0.93	0.93	27.0	26.9	26.9	26	0.00	0.00
20	1.07	0.92	0.92	26.9	26.8	26.8	26	0.06	-0.01
35	1.13	1.00	0.96	26.8	26.8	26.8	26	0.10	0.03
50	1.10	1.00	0.97	26.8	26.7	26.7	26	0.14	0.04
65	1.13	1.00	0.97	26.6	26.7	26.7	26	0.19	0.04
80	1.12	1.00	0.98	26.6	26.7	26.8	26	0.23	0.05
95	1.13	0.98	1.00	26.7	26.8	26.8	26	0.27	0.07
110	1.17	1.06	1.00	26.7	26.8	26.7	26	0.32	0.07
125	1.15	1.02	1.01	26.6	26.7	26.7	26	0.36	0.08
140	1.16	1.02	1.01	26.6	26.7	26.8	26	0.40	80.0
155	1.15	1.05	1.01	26.7	26.8	26.8	26	0.45	0.08
170	1.14	1.03	0.99	26.6	26.7	26.8	26	0.49	0.06
185	1.14	1.00	0.99	26.7	26.8	26.8	26	0.53	0.06
200	1.15	1.02	1.00	26.2	26.4	26.5	26	0.57	0.07
215	1.14	1.04	1.01	26.4	26.5	26.6	26	0.62	0.08
290	1.14	1.02	1.00	26.7	26.8	26.9	26	0.83	0.07
305	1.14	1.02	0.99	26.8	27.0	26.9	26	0.88	0.06
320	1.14	1.04	0.99	26.6	26.8	26.8	26	0.92	0.06

Prueba de conductividad con hipoclorito Flujo bajo sin mampara

Curva E



Prueba de cloro


60 ml de hipoclorito en 2 L de agua

Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
	Fondo	Media	Superficie	H1	H2	H3	Laboratorio		
min	mS	mS	mS	°C	°C	°C	°C		
0	0.95	0.94	0.94	27.8	27.8	27.8	27	0.00	0.00
15	1.04	0.95	0.95	27.5	27.5	27.5	27	0.04	0.01
30	1.05	0.96	0.94	27.2	27.2	27.3	27	0.09	0.00
45	1.10	0.98	0.96	27.1	27.2	27.3	27	0.13	0.02
60	1.11	0.99	0.97	27 1	27.2	27.2	27	0.17	0.03
75	1.13	0.99	0.97	27.2	27.2	27.3	27	0.22	0.03
90	1.11	0.98	0.95	27.2	27.4	27.4	27	0.26	0.01
105	1.12	0.99	0.96	27.4	27.5	27.4	27	0.30	0.02
120	1.07	0.97	0.97	27.2	27.3	27.4	27	0.34	0.03
135	1.12	0.98	0.96	27.2	27.4	27.5	27	0.39	0.02
150	1.09	0.96	0.95	27.3	27.5	27.5	27	0.43	0.01
165	1.11	0.94	0.96	27.3	27.4	27.5	27	0.47	0.02
180	1.08	0.96	0.95	27.4	27.5	27.5	27	0.52	0.01
195	1.08	0.96	0.94	27.3	27.5	27.6	27	0.56	0.00
255	1.05	0.94	0.93	27.5	27.7	27.8	27	0.73	-0.01
270	1.05	0.94	0.93	27.7	27.7	27.9	27	0.78	-0.01
285	1.05	0.94	0.93	27.8	27.8	27.9	27	0.82	-0.01

Prueba de conductividad con hipoclorito Flujo bajo sin mampara

Curva E

Prueba de cloro

100 ml de hipoclorito en 2 L de agua

Inicio de inyección de trazador:

Término de inyección de trazador:

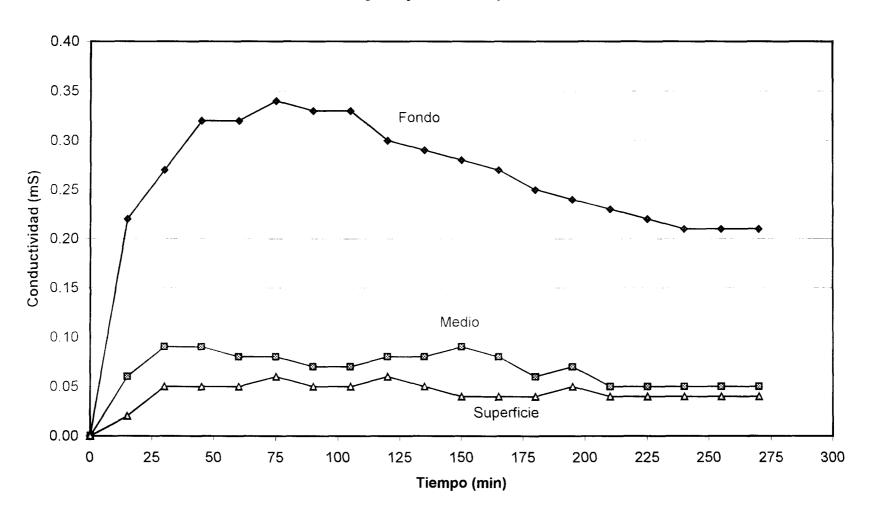
Densidad:

Conductividad:

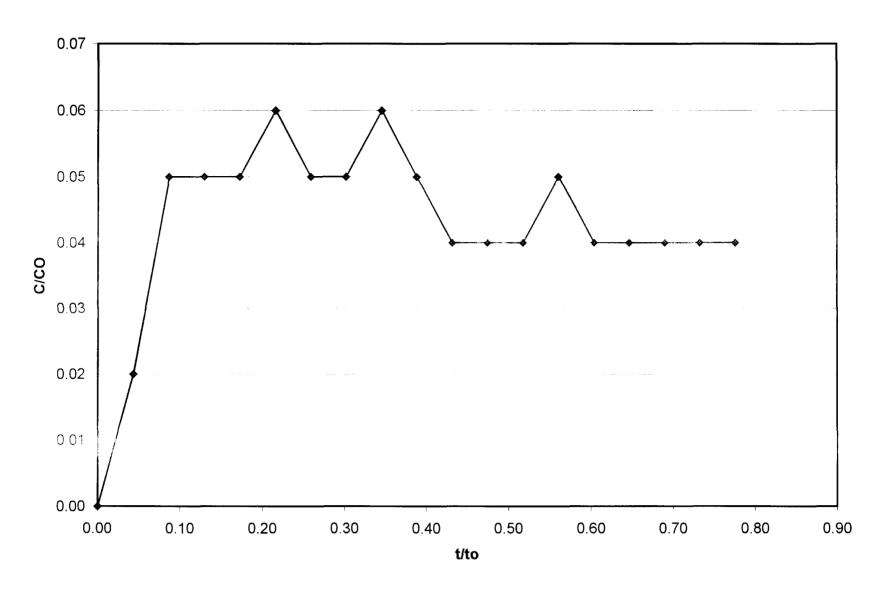
Temperatura:

10:45

10:46


10:46

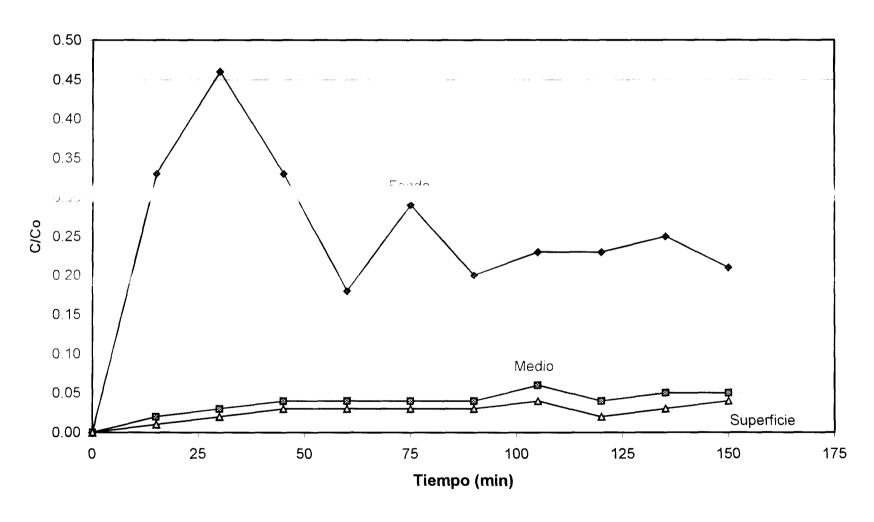
1.002 g/L


7.57

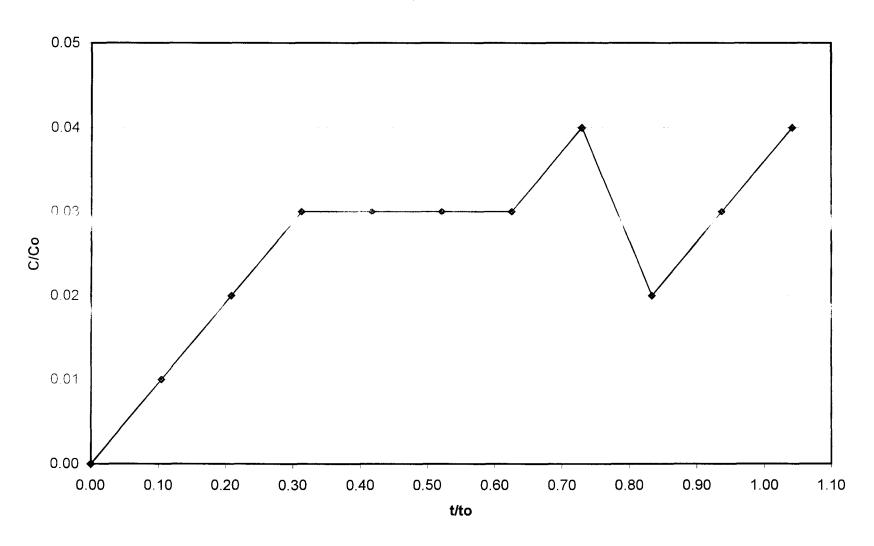
Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
	Fondo	Media	Superficie	H1	H2	H3	Laboratorio		
min	mS	mS	mS	°C	°C	°C	°C		1
0	0.89	0.88	0.88	28.9	28.8	28.8	28	0.00	0.00
15	1.11	0.94	0.90	28.3	28.3	28.3	28	0.04	0.02
30	1.16	0.97	0.93	28.2	28.2	28.3	28	0.09	0.05
45	1.21	0.97	0.93	27.9	28.0	28.1	28	0.13	0.05
60	1.21	0.96	0.93	27.7	27.8	27.8	28	0.17	0.05
75	1.23	0.96	0.94	27.6	27.8	27.9	28	0.22	0.06
90	1.22	0.95	0.93	27.8	27.8	27.9	28	0.26	0.05
105	1.22	0.95	0.93	27.7	27.9	28.0	28	0.30	0.05
120	1.19	0.96	0.94	27.9	28.1	28.2	28	0.34	0.06
135	1.18	0.96	0.93	28.0	28.2	28.2	28	0.39	0.05
150	1.17	0.97	0.92	28.0	28.2	28.3	28	0.43	0.04
165	1.16	0.96	0.92	28.2	28.4	28.5	28	0.47	0.04
180	1.14	0.94	0.92	28.4	28.6	28.6	28	0.52	0.04
195	1.13	0.95	0.93	28.5	28.7	28.7	28	0.56	0.05
210	1.12	0.93	0.92	28.6	28.8	28.8	28	0.60	0.04
225	1.11	0.93	0.92	28.6	28.7	28.6	28	0.65	0.04
240	1.10	0.93	0.92	28.7	28.8	28.9	28	0.69	0.04
255	1.10	0.93	0.92	28.5	28.7	28.7	28	0.73	0.04
270	1.10	0.93	0.92	28.6	28.7	28.8	28	0.78	0.04

Prueba de conductividad con hipoclorito Flujo bajo sin mampara

Curva E



Prueba de cloro (con rastra y mampara 10 cms diámetro) 80 ml de hipoclorito en 2 L de agua


Inicio de inyección de trazador: 10:50 Término de inyección de trazador: 10:51 Densidad: 1.002 g/L Conductividad: 6.3 Temperatura: 28.8

Tiempo min	Conductividad Fondo mS	Conductividad Media mS	Conductividad Superficie mS	Temperatura H1 °C	Temperatura H2 °C	Temperatura H3 °C	Temperatura Laboratorio °C	t/t0	CS/C0
0	0.93	0.93	0.93	28.9	28.9	28.8	28	0.00	0.00
15	1.26	0.95	0.94	28.3	28.3	28.4	28	0.10	0.01
30	1.39	0.96	0.95	28.3	28.3	28.4	28	6.24	0.02
45	1.26	0.97	0.96	28.3	28.4	28.4	28	0.31	0.03
50	1.11	0.97	0.96	28.0	28.1	28.2	28	0.42	0.03
75	1.22	0.97	0.96	28.0	28.2	28.3	28	0.52	0.03
90	1.13	0.97	0.96	27.6	27.9	28.0	28	0.63	0.03
105	1.16	0.99	0.97	27.8	27.9	28.0	28	0.73	0.04
120	1.16	0.97	0.95	27.6	27.9	28.1	28	0.83	0.02
135	1.18	0.98	0.96	27.7	27.8	28.0	28	0.94	0.03
150	1.14	0.98	0.97	27.7	28.2	28.2	28	1.04	0.04

Prueba de conductividad con hipoclorito Flujo alto con mampara

Prueba de cloro (con rastra y mampara de 10 cms de diámetro)

130 ml de hipoclorito en 2 L de agua

Inicio de inyección de trazador:

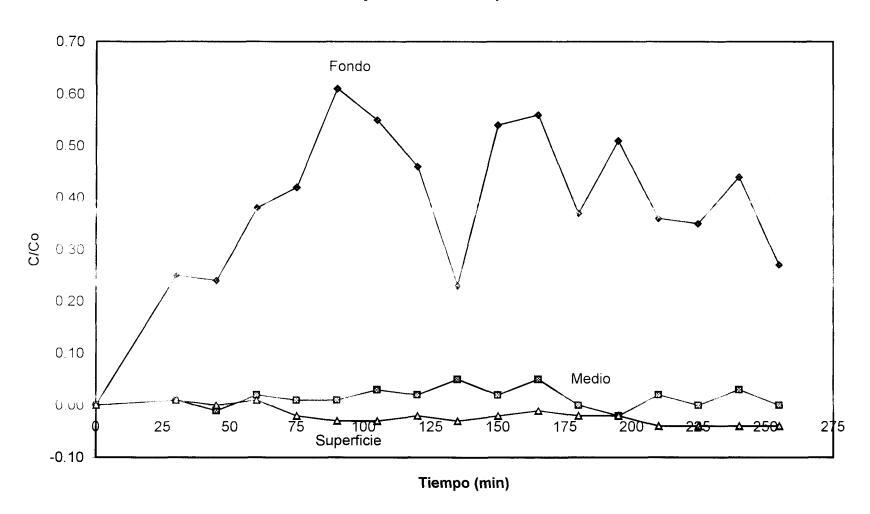
Término de inyección de trazador:

Densidad:

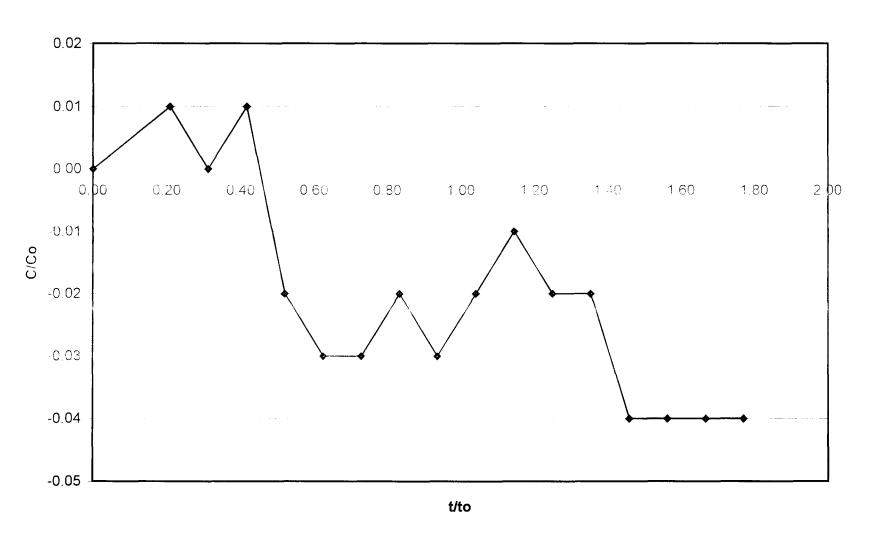
Conductividad:

Temperatura:

12:28


12:29

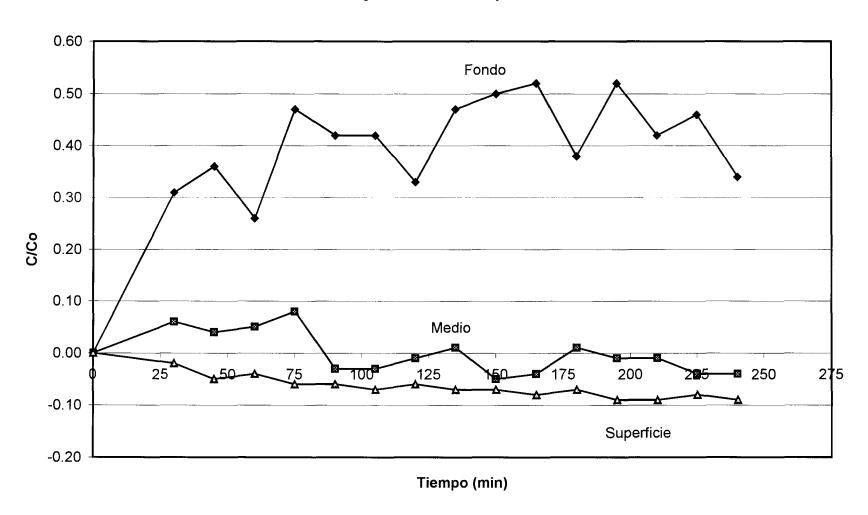
1.002 g/L


28.7

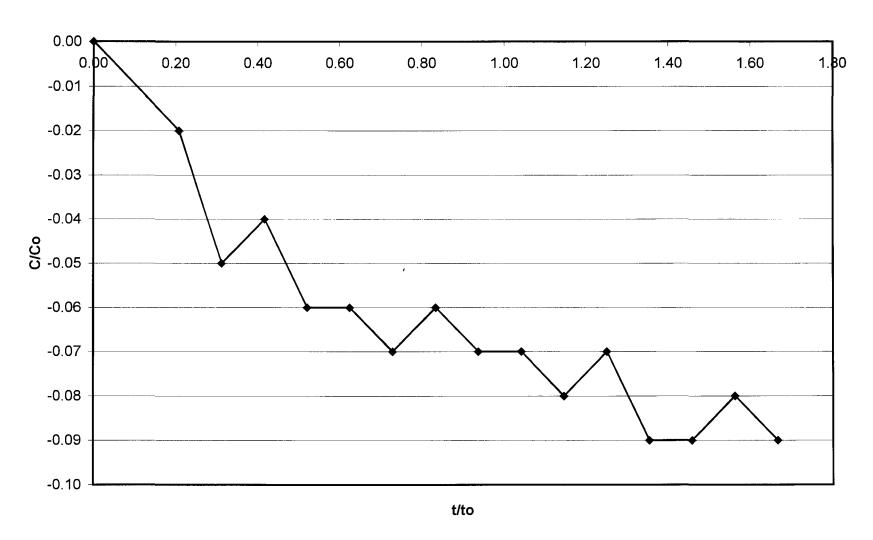
Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0
·	Fondo	Media	Superficie	H1	H2	Н3	Laboratorio	
min	mS	mS	mS	°C	°C	°C	°C	
0	0.99	0.98	0.98	28.7	23.1	28,7	29	0.00
30	1.24	0.99	0.99	28.6	28.8	28.9	29	0.21
45	1.23	0.97	0.98	28.8	28.8	28.8	29	0.31
60	1.27	1 00	0,99	28 B	28 7	28.8	29	0.42
75	1.41	0.99	บ.96	28.6	28.7	28.7	29	0.52
90	1.60	0.99	0.95	28.6	28.3	28.8	29	0.63
105	1.54	1.01	0.95	28.7	28.9	28.9	29	0.73
120	1.45	1.00	0.96	27.8	28.9	29.0	29	0.83
135	1 22	1 03	0.95	28.6	28.8	28 9	29	0.94
150	1.53	1.00	0.96	28.6	28.7	28.8	29	1.04
165	1.55	1.03	0.97	28.4	28.6	28.7	29	1.15
180	1.36	0 98	0.96	28 5	28.8	28.8	29	1.25
19:	1.50	9 98	0.96	28 7	28.8	28.9	29	1.35
210	1.35	1.00	0.94	28.9	28.8	29.1	29	1.46
225	1.34	0.98	0.94	28.9	29.0	29.1	29	1.56
240	1.43	1.01	0.94	28.7	28.9	29.0	29	1.67
255	1.26	0.98	0.94	28.7	28.9	29.0	29	1.77

Prueba de conductividad don hipoclorito Flujo alto con mampara

Curva E


Prueba de cloro (con rastra y mampara de 10 cms de diámetro) 100 ml de hipoclorito en 2 L de agua

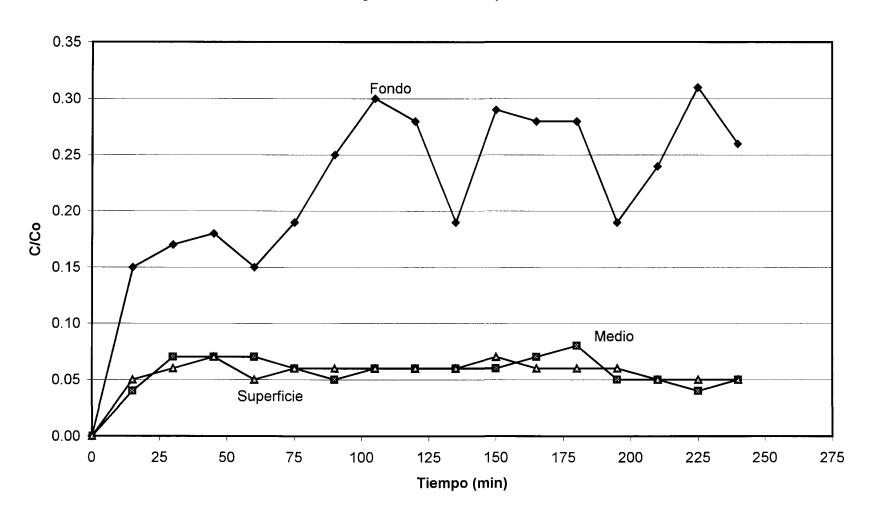
Inicio de inyección de trazador: 11:14 Término de inyección de trazador: 11:15 Densidad: 1.002 g/L Conductividad: 7.81 29.8 Temperatura:


Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
	Fondo	Media	Superficie	H1	H2	H3	Laboratorio		
min	mS	mS	mS	°C	°C	°C	°C		
0	1.04	1.03	1.02	29.1	29.1	29.1	28	0.00	0.00
30	1.35	1.09	1.00	28.8	28.8	28.8	28	0.21	-0.02
45	1.40	1.07	0.97	28.5	28.6	28.6	28	0.31	-0.05
60	1.30	1.08	0.98	28.5	28.6	28.6	28	0.42	-0.04
_ 75	1.51	1.11	0.96	28.5	28.7	28.7	28	0.52	-0.06
90	1.46	1.00	0.96	28.5	28.7	28.7	28	0.63	-0.06
105	1.46	1.00	0.95	28.7	28.8	28.8	28	0.73	-0.07
120	1.37	1.02	0.96	28.5	28.7	28.7	28	0.83	-0.06
135	1.51	1.04	0.95	28.4	28.6	28.6	28	0.94	-0.07
150	1.54	0.98	0.95	28.5	28.6	28.7	28	1.04	-0.07
165	1.56	0.99	0.94	28.6	28.5	28.6	28	1.15	-0.08
180	1.42	1.04	0.95	28.3	28.5	28.6	28	1.25	-0.07
195	1.56	1.02	0.93	28.3	28.5	28.6	28	1.35	-0.09
210	1.46	1.02	0.93	28.3	28.6	28.6	28	1.46	-0.09
225	1.50	0.99	0.94	28.2	28.4	28.5	28	1.56	-0.08
240	1.38	0.99	0.93	28.4	28.5	28.6	28	1.67	-0.09

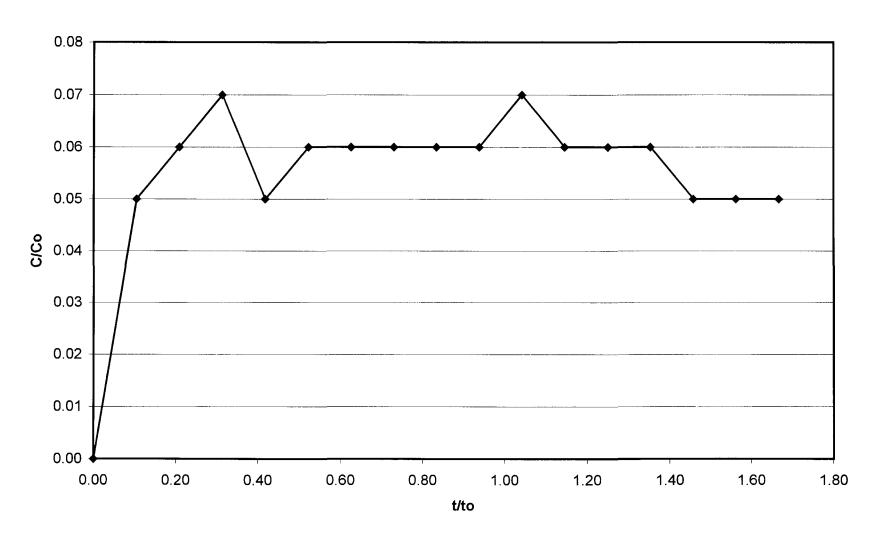
Tiempo	Conductividad Fondo	Conductividad Media	Conductividad Superficie		
_min	mS	mS	mS		
0	0.00	0.00	0.00		
30	0.31	0.06	-0.02		
45	0.36	0.04	-0.05		
60	0.26	0.05	-0.04		

Prueba de conductividad con hipoclorito Flujo alto con mampara

Curva E


Prueba de cloro (con rastra y mampara de 10 cms de diámetro) 80 ml de hipoclorito en 2 L de agua

Inicio de inyección de trazador: Término de inyección de trazador:


Densidad: 1.000 g/L Conductividad: 7.05 29.2 Temperatura:

Tiempo	Conductividad	Conductividad	Conductividad	Temperatura	Temperatura	Temperatura	Temperatura	t/t0	CS/C0
	Fondo	Media	Superficie	H1	H2	Н3	Laboratorio		
min	mS	mS	mS	°C	°C	°C	°C		
0	0.94	0.92	0.90	29.3	29.3	29.3	28	0.00	0.00
15	1.09	0.96	0.95	29.0	29.0	29.0	28	0.10	0.05
30	1.11	0.99	0.96	28.8	28.9	28.9	28	0.21	0.06
45	1.12	0.99	0.97	28.9	28.9	29.0	28	0.31	0.07
60	1.09	0.99	0.95	28.8	28.9	28.9	28	0.42	0.05
75	1.13	0.98	0.96	28.8	28.9	29.0	29	0.52	0.06
90	1.19	0.97	0.96	28.9	29.0	29.0	29	0.63	0.06
105	1.24	0.98	0.96	28.9	28.9	29.0	29	0.73	0.06
120	1.22	0.98	0.96	28.9	29.0	29.0	29	0.83	0.06
135	1.13	0.98	0.96	28.9	29.0	29.0	29	0.94	0.06
150	1.23	0.98	0.97	28.8	28.9	29.0	29	1.04	0.07
165	1.22	0.99	0.96	28.8	29.0	29.0	29	1.15	0.06
180	1.22	1.00	0.96	28.8	28.9	29.0	29	1.25	0.06
195	1.13	0.97	0.96	28.8	28.9	29.0	29	1.35	0.06
210	1.18	0.97	0.95	28.9	29.0	29.0	29	1.46	0.05
225	1.25	0.96	0.95	28.8	28.9	28.9	29	1.56	0.05
240	1.20	0.97	0.95	28.4	28.7	28.8	29	1.67	0.05

Prueba de conductividad con hipoclorito Flujo alto con mampara

Curva E

