Questions Module 4

DRINKING WATER SUPPLY AND WASTEWATER INFILTRATION

Mark the correct alternative in yellow. Note that the correct answers can be 1 or up to all 4 alternatives.

- 1. Why is primary treatment (screening and grit removal) essential prior to discharge to an open infiltration basin as in the RENA treatment park?
- a. To retard clogging of infiltration basins
- b. To avoid floating particles in the basin
- c. To decrease the sludge volume in the basin
- d. All of the above
- 2. What is the is most energy consuming component/process in the Rena treatment park?
- a. The primary step (screening and Salsnes filter)
- b. The sludge removal and scraping of the infiltration basins
- c. The percolation of water through the soil
- d. The pumping of wastewater from Rena to the treatment park (8km)
- 3. In dual media filter (as you have seen in NRVA) how do you arrange the filter media
- a. The denser particles are kept above the lighter particles
- b. The lighter particles are kept above the denser particles
- c. The particles with smaller diameter are in the bottom layer
- d. The filter media consists of rounded particles above square particles
- 4. What do you mean by coagulation in water treatment
- a. A process of adding lime to water
- b. A process of raising the pH of the water
- c. A process where smaller particles are brought together to form larger particles
- d. A process of disinfecting contaminated water
- 5. Disinfection by ultra violet light is less effective for water with;
- a. High turbidity
- b. High *E.coli*
- c. High pH
- d. Low turbidity
- 6. In NRVA chlorination is succeeding UV-treatment in the treatment train Why?

- a. Because UV light alters the chlor-compounds and thereby reduces the efficiency of chlorination
- b. For practical reasons (as space)
- c. Because of danger of explosion when chlorinated water is hit by UV-light
- 7. Why is pH often raised before drinking water enters the distribution system?
- a. To prevent scale formation in water heaters
- b. To kill the pathogens
- c. To prevent the corrosion in the distribution system
- d. To improve the taste of the water
- 8. What is the most common oxidation state of iron (Fe) in groundwater with a to high iron content?
- e. Fe⁵⁺
- f. Fe⁵⁻
- g. Fe²⁺
- h. Fe³
- 9. To remove iron (Fe) from groundwater the water can be aerated using:
 - a. A cascade or fountain spraying the water onto a sandfilter
 - b. An ejector and reinfiltration of the water to the groundwater reservoir
 - c. Adding an oxidized compound
 - d. Adding sodium bicarbonate (baking powder)
- 10. In the Vyredox method the iron is precipitated in the groundwater reservoir. What agent is catalyzing the process of iron oxidation?
 - a. Bacteria
 - b. Nanoparticles
 - c. CaO
 - d. HCO₃