Questions Module 4

DRINKING WATER SUPPLY

Mark the correct alternative in yellow. Note that the correct answers can be 1 or up to all 4 alternatives.

- 1. To locate the raw water intake in the hypolimnion of a deep lake is normally regarded as on hygienic barrier. At what time of the year can this barrier be ineffective?
- a. In the summer
- b. In the fall and in the spring when the lake has a "turnover"
- c. In the winter
- d. In the fall and summer
- 2. What characterizes the water in a dystrofic lake?
- a. High in humic acids
- b. A yellow color of the water
- c. Very turbid water
- d. Contamination with bacteria
- 3. Which of the processes can be used to treat water from a dystrofic lake?
- a. Coagulation
- b. Ion exchange
- c. Nanofiltration
- d. Ozonation
- 4. Which of the processes do you think are suited to treat water from a eutrofic lake?
- a. Adding lime to the water
- b. Ozonation
- c. Coagulation followed by flotation and filtration (dual media and carbon filtration)
- d. Ion-exchange
- 5. What is an aquifer?
- a. A type of groundwater
- b. An underground body of sediments or rock holding a groundwater reservoir
- c. Groundwater in bedrock
- d. Groundwater recharged by a river
- 6. Groundwater normally has:
- a. A more stable temperature than surface water

- b. Higher content of suspended solids (SS) than surface water
- c. Better hygienic quality than surface water
- d. Better protectio against pollution than surface water
- 7. In Norway two hygienic barriers are needed when constructing a water supply system for more than 150 pe. Which of the following options can be considered as a natural hygienic barrier
- a. Filtration unsaturated through soil
- b. A water intake in the epilimnion
- c. Restricted activity in primary recharge zone (zone 1) near a groundwater well
- d. A water intake below the metalimnion in a deep lake
- 8. In the primary intake zone (zone 1) of a groundwater well the water should have:
- a. No bacteria when entering the zone
- b. A protective layer of clay
- c. A minimum of 60 d of residence time from the outer limit to the production well
- d. Minimum 2 years residence time from the outer limit to the production well
- 9. What do you mean by residual head at the tap stand?
- a. Total head available between distribution reservoir and tapstand minus the head loss in the pipe
- b. The head loss at the tap stand
- c. Total head available between distribution reservoir and tapstand plus the total head loss
- d. None of the above
- 10. What is the optimum residual head desired at the tap stand? What will happen if the residual head is too low?
- a. 50 m / flow will be high
- b. 50 m/ flow will be minimal
- c. 15 m / flow will be minimal
- d. 15 m / cause erosion of the valve
- 11. The key hydraulic parameters used for the design of the water supply pipe line are?

- a. Velocity, viscosity of water, water temperature, discharge
- b. Discharge, elasticity of water, temperature, velocity
- c. Pipe diameter (internal), velocity, flow, head loss
- d. Head loss, velocity, flow
- 12. Which hydraulic formula do you recommend for the design of a combined sanitary sewers
- a. Darcy-Weisbach
- b. Mannings formula
- c. Hazen-Williams formula
- d. Stokes law
- 13. High density polyethylene (HDPE) pipes are normally used for rural water supply. However, in which of the following situations Galvanised Iron (GI) pipes are used.
- a. In road crossing
- b. In stream crossing
- c. At tap stands
- d. All of the above
- 14. Normally the community tap stand is located such that the average travelling time from the house to the tap stand is
- a. Not more than 2 hours
- b. Not more than 15 to 20 min
- c. Less than 1 min
- d Maximum 10 min
- 15. What treatment unit you recommend for a rural water supply system with stream as a source of water supply (fairly good quality)
- e. Sedimentation tank, mechanical aeration, sedimentation with coagulation, filtration
- f. Sedimentation with coagulation, rapid sand filtration, chlorination
- g. Sedimentation, slow sand filtration, disinfection with chlorine
- h. Reverse osmosis