
Financing Watermill Upgrades

The Business Case for Banking Support

CHAMOLI WATERMILL ASSOCIATION

Financing Watermill Upgrades

CONTENTS

	4
2. BACKGROUND	1
 3. TECHNOLOGY. 3.1 Traditional Watermills 3.2 Upgraded Watermill. 	
 4. COST ESTIMATES	
5. MARKET OPPORTUNITIES	4
6. SOCIAL RELEVENCE	5
 7. BUSINESS AND FINANCE ASPECTS	6
8. CONCLUSIONS	7

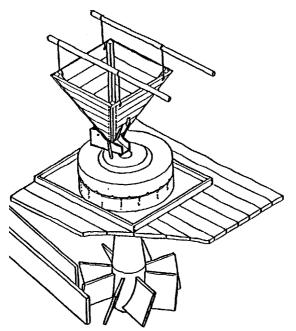
ANNEX A : FURTHER TECHNICAL DETAILS OF THE 'NEW GHARAT' ANNEX B : DETAILS OF INVESTMENT AND OPERATING COSTS ANNEX C : FINANCIAL ANALYSIS WORKSHEETS & ASSUMPTIONS

1. INTRODUCTION

This summary report prepared by IT Power presents the business case for supporting the upgrading of traditional watermills ('gharats') with improved technology. The report is directed at the banking community with the aim of encouraging rural and agricultural banks to offer appropriate finance for new projects. The report provides an overview of the technical, financial, social and market characteristics of watermill upgrades.

2. BACKGROUND

The principal use of hydropower in the Himalayas is through traditional watermills for grinding grain. These develop typically less than one kilowatt of mechanical power at low efficiency. Many of the traditional watermills are now being abandoned and the remaining mills face increasing competition from diesel and electric mills.


Since 1996, efforts by IT Power in association with the Himalayan Environmental Studies & Conservation Organisation and the Chamoli Watermillers Association have resulted in the successful demonstration of cost-effective solutions for upgrading the traditional watermills. These have been developed with the participation of the watermillers and local manufacturing partners and have now been demonstrated under local conditions since 1999.

3. TECHNOLOGY

3.1 Traditional Watermills

The concept and main components of a traditional watermill are illustrated in Figure 1, consisting of a grain hopper, millstones, water chute and wooden runner. The grinding capacity of the traditional mills ranges from 5-10 kg of flour per hour, with an efficiency of less than 20%.

Figure 1 Traditional watermill or 'gharat'

3.2 Upgraded Watermill

The improved watermill has been developed to maximise the grinding capacity of the existing mill-stones at an affordable cost, so that the watermills will be able to compete effectively with the diesel mills. The upgraded mills have proven capable of grinding at 20-25 kg/hour, typically a three-fold increase.

The new runner fits under the existing mill-house and can use the same mill-stones. Figure 2 depicts the upgraded watermill and highlights the new components.

To improve efficiency and durability, the runner is of metal construction and is supplied with a steel shaft and improved bearings. The runner has been designed to achieve an efficiency above 50% and to have a geometry which is suitable either for casting, or fabricating at a local welding shop. The upgraded mill is intended to operate at roughly 200rpm to achieve peak output; the traditional watermills run at less than 100rpm.

The new runner can operate with the existing wooden chute although this is often replaced with a new chute from GI Sheet. An additional improvement is the provision of a PVC pipe and nozzle, which directs a more powerful jet on to the runner, as indicated in Figure 2.

A limited amount of civil work from a mason may be required to make small modifications to the powerhouse, and to ensure the intake canal is in robust condition. A new system also requires some technical assistance to ensure that the equipment is installed for optimum efficiency, and to train the miller in the necessary maintenance tasks. This assistance can be provided by the Chamoli Watermill Association, who have already overseen the installation of more than 100 demonstration units.

Further technical details are provided in Annex A.

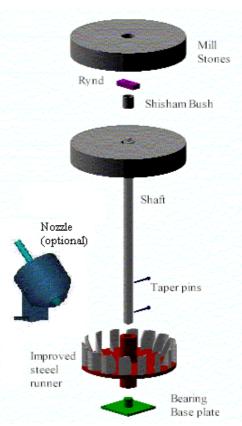


Figure 2 Upgraded Watermill

4. COST ESTIMATES

4.1 Investment Costs

The initial expenses for upgrading a traditional watermill are presented in Table 1. An explanation of the cost elements involved is given in Annex B.

No.	Item	Costs (Rs)	Basis of costs
1	Hardware costs	6900	Based on manufacturer's quotations
2	Channel- GI sheet	1000	Based on manufacturer's quotations
3	Top Grinding Stone	1500	Market survey
4	Materials for civil works	720	Market survey of prices
5	Labour for civil works	480	Two man days of effort for a mason
6	Installation & Commissioning	1000	Market survey
7	Technical assistance	3740	Market survey
	Total	15340	

Table 1 Watermill Upgrade Costs

4.2 Operation & Maintenance Costs

Operation and Maintenance costs primarily consist of the replacement of parts that are subject to wear and tear. As the life of the components are proportional to the hours of operation of the watermill, the costs given in Table 2 represent an average watermill upgrade and additional explanation on the cost elements is available at Annex B. The cost of labour contributed by the watermiller himself is not considered.

 Table 2 Average Operation & Maintenance Costs

No.	Item	Annual Cost (Rs)	Basis of costs
1	Bearing Base Plates	800	Two base plates @ Rs. 400, based on manufacturers quotation
2	Ball Bearing	40	Based on manufacturers quotation
3	Shisham Bushes	300	Cost of two bushes @ Rs. 150 based on manufacturers quotation
4	Grinding Stones	750	Half the cost of one stone @ 1500 based on manufacturers quotation
5	Tool Repair	50	Past operating costs of upgraded watermills
6	Sundries	60	Past operating costs of upgraded watermills
	Total (Rs)	2000/year	

4.3 Summary

Hence in order to benefit from this technology, a watermiller has to find at least 15,000 Rs to invest in the upgrade of his mill, plus 2000Rs/year in annual maintenance costs.

The increase in income to justify this investment is discussed in Section 7.

5. MARKET OPPORTUNITIES

In the hilly regions, large quantities of wheat and millet are grown and consumed locally, all of which has to be processed by grinding. This was the exclusive role of the watermill until diesel and electric mills became available to offer a faster (but more expensive) service.

A market survey of 500 households in Chamoli district, within the service area of two upgraded watermills, revealed that the average household produces between 270 and 350 kg/year of wheat (60%) and millet (40%). Since an upgraded mill should aim to process at least 20,000 kg per year to achieve an attractive income, as discussed below, it is apparent that the market opportunity is for upgrading those mills which can service at least 75 and preferably 100 families. A second essential aspect is that the mill has access to sufficient water to maintain its operations throughout the year, even if processing speed is somewhat reduced in the dry season.

As long as the service is quick and reliable enough, local families have shown a strong preference for 'gharat-atta' (watermill flour) which has the best quality and lowest processing cost: typically 0.75 Rs/kg with payment in kind (known locally as *Bhagwari*), compared with 1.5 Rs/kg cash payment at diesel mills.

There are estimated to have been nearly 200,000 watermills at one time, spread across the Himalayan states of India. Hence the possibilities for replicating the pilot schemes are enormous. A 2003 survey in Chamoli district alone has revealed the existence of 2160 watermill sites, of which 1150 (53%) are still in operation.

It is also worth noting that 3 times as much wheat flour is bought from the market as is grown locally. There is therefore a good opportunity for watermillers to import grains from other wheat growing areas of the country and grind them in their mills for local sale of *gharat-atta*.

6. SOCIAL RELEVENCE

A survey to assess the social impacts of watermill upgrades was carried out in Urgam, Gadora and Tangsa villages, Chamoli, in April 2003. This involved village meetings, and interviews with individual millers and their customers.

For the end-users, principally women, upgraded watermills were seen to bring benefits in terms of saving both time and money, as well as better quality flour (compared with a diesel mill). Also, those who had to travel far to the mills had more to gain from a faster service since it could save them a second round-trip to collect the processed flour.

To millers, the benefit has been a major increase in business and hence better earnings, and the ability to operate their mill as their sole source of income.

The only negative aspect has been among millers of traditional mills who feel they have lost customers to the upgraded mills. These millers have been encouraged to invest in upgraded machines themselves.

Village meeting with women of Gadora

Interview with a mill-owner at his mill

7. BUSINESS AND FINANCE ASPECTS

7.1 Financial Analysis

A detailed financial analysis has been carried out on the business viability of watermill upgrade schemes. The analysis was based on the existing experience with watermill upgrades in the hills and the assumptions made are given in Annex C. Analysis of a traditional watermill business without the upgrade was also made to quantify the baseline case. Details of each analysis are given in Annex C. The comparative results are given in Table 3 below:

Table 3 Comparative financial analysis

	Best case Upgrade	Average case Upgrade	Traditional Watermill
Investment Costs (Rs)	15340	15340	2000
Annual O&M costs (Rs)	2060	1580	740
Annual Income (Rs)	22248	17064	3348
IRR (10 years, with 3 year loan at 12.5%)	104%	75%	NA
NPV of cash flow (10 years) (Rs)	57256	38472	8636

The following key results were drawn from the analysis:

- □ A six-fold increase in income can be expected for a watermill upgrade compared to a traditional watermill. The income increases from Rs 217/month to Rs1290 /month.
- A watermill upgrade will have a high internal rate of return (over 75%) servicing a loan from a commercial bank. The miller will still have an increased income on a monthly basis after providing for loan repayments;
- □ The average monthly repayments on a loan of Rs. 10,600 will be Rs 380/month over a three year period. The average repayment represents only 29% of the monthly income generated;

7.2 Business Framework

A possible business framework for watermill upgrades has been developed considering the rural banking system, the current institutional arrangements for watermill upgrades and the social and market aspects. A proposed framework is shown in Figure 2, summarised as follows:

- □ An intermediary provides the technical services such as site appraisal, procurement, loan application, and supervision of installation, and co-ordinates with the manufacturer and the local banks on behalf of the miller. The Chamoli Watermill Association has agreed that it can play the role of the intermediary at least during the initial phase of market development.
- □ The millers avail a loan from the local bank to cover the hardware and civil costs of the watermill upgrade. The nationalised banks and the regional rural banks have previously expressed willingness to lend to watermill upgrades as a regular loan. The Regional Rural Banks may seek refinance from NABARD (National Bank for Agricultural and Rural Development).
- □ The manufacturers who have built watermill upgrades in the past would supply the hardware. The intermediary and a civil contractor carries out the installation and commissioning. The costs are financed through a combination of loan and contribution from the millers.
- □ The upgraded watermill generates increased business and is able to repay the loan on schedule after providing for the miller's own needs.

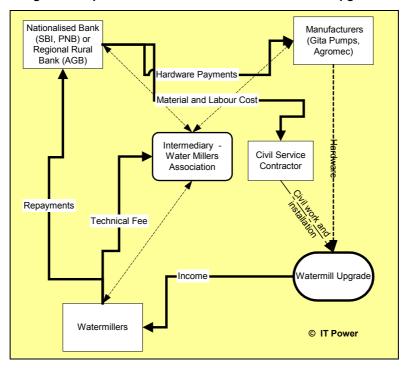


Figure 2 Proposed Business Framework for Watermill upgrades

The relevance of the business framework was demonstrated in November 2003 when two millers obtained loans from a nationalised bank and a regional rural bank and upgraded watermills using the WMA as the technical intermediary. A sustained effort is now needed to scale-up the business model so as to bring significant impacts for the many potential beneficiaries.

8. CONCLUSIONS

- Upgrading traditional watermills is an effective and sustainable way of meeting essential agroprocessing needs in the Himalayan region using an abundant local energy resource.
- □ The technology for watermill upgrades is now proven, understood and being manufactured locally. Capacity has been developed in the Hills to specify, own and operate these upgraded watermills. Today a critical mass of installations exist as a basis to increase the scale of efforts;
- □ The number of watermills installed and the years of operating experience so far provides a firm basis to estimate the investment and operating costs of the watermill upgrades. The total investment cost for a watermill upgrade is estimated to be around 15,000 Rs, with annual O&M costs around 2000 Rs/year;
- □ A large number of watermills in Uttaranchal and other parts of the Himalayas are not functional or use traditional technology and are candidates for upgrades. There exists a market preference for flour ground by watermills, however it is important to have a critical service level of 75-100 families, and a consistent water supply, in order to ensure viability;
- □ A social impact assessment concluded that upgraded watermills were perceived as a faster and cheaper means of grinding flour. The quality of the flour was also considered to be the best available. The income generated is sufficient for millers to run their business as their sole source of income.
- □ The upgraded watermill results in a six fold increase in income and can comfortably service a commercial loan. This presents an opportunity for local banks to lend to watermill upgrades.
- A business framework involving the miller, watermill association, manufacturers and local banks needs to be galvanised to facilitate widespread uptake of this technology.

ANNEX A FURTHER TECHNICAL DETAILS OF THE 'NEW GHARAT'

Working Principle

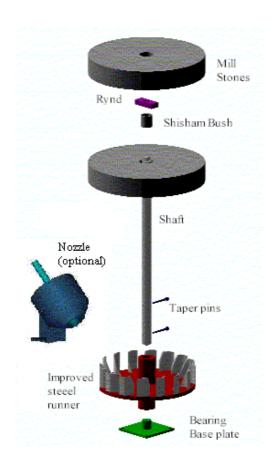
The upgraded watermill works on the principle the runner blades deflect the water jet to create a turning force on the runner. The open flume can be retained for the new watermill design, but needs to be aligned to ensure the jet strikes the runner correctly as shown below (the new runner is smaller than the traditional waterwheel). To operate efficiently, the new runner turns at roughly 200rpm (traditional mills run at less than 100rpm).

The milling performance of the upgraded watermill depends upon the following parameters:

- □ head and flow (i.e. gross power available)
- **G** stone and runner rpm
- **G** gap between drive-stone and bed-stone
- **G** feed rate from the hopper
- weight of top stone
- □ stone-dressing detail
- **u** type of grain

Hardware Components of the Upgraded Watermill

The various components that are required for upgrading the watermill along are shown below.


Runner The runner, with upper and lower bosses, is a single piece made in cast steel.	
Shaft and taper pins The upper end of the shaft is cut in a rectangular form to fit the T-piece (Rynd cam) for driving the upper stone.	
Bottom bearing, with ball and grease cup The 1-inch ball bearing runs on the pin made from hardened steel. The grease cup feeds grease up to the ball through a hole in the pin.	

Shisham bush The bush is preferably soaked in hot oil for 2-3 days.	
T-piece (Rynd cam) A slot must be cut into the top mill-stone to fit the correct size of T-piece.	

Watermill Assembly

The exploded view of an upgraded watermill illustrates how the various components are assembled.

- □ The runner is fitted to the shaft using the 2 taper pins. These are tapped firmly into place with a hammer.
- □ The ball bearing is placed into the hole in the bottom of the shaft.
- □ The top of the shaft is inserted up through the floor of the mill-house and through the hole in the bottom millstone, until it stands vertically.
- By raising the runner and shaft further, the bottom bearing can be located underneath the runner boss.
- □ The bearing base plate is then fixed to the wooden beam using 4 strong nails and the runner lowered to rest on the bearing.
- □ The shisham bush is placed over the top of the shaft and tapped into place inside the bottom millstone. It may be necessary to enlarge the hole in the millstone with a chisel until the bush fits.
- □ The Rynd is fitted onto the end of the shaft and the top stone lowered into position. It may be necessary to enlarge the groove in the millstone with a chisel to fit the new Rynd.

Dressing the Mill Stones

The extra power provided, at least double that of the old watermill, can not be fully absorbed by un-cut mill-stones. The bottom stone needs to be 'dressed' with appropriate grooves to enable the stones to grind effectively at the higher speed. This forms an essential part of the installation process - otherwise the stones will get hot and break. Dressing increases the feed rate of the grain and provides cooling during higher speed milling. Stones have to be redressed periodically as the grooves wear down.

Stone-dressing

ANNEX B DETAILS OF INVESTMENT AND OPERATING COSTS

Investment Cost Components

- □ Hardware costs include the costs of components shown in ANNEX A, which includes cost of single piece cast steel runner with upper & lower bosses, shaft & taper pins, one inch ball bearing of hardened steel with grease cup, shisham bush and rynd cam. The costs include taxes and transportation.
- □ Channel cost includes the cost of galvanised iron sheet (approximately 25 foot long) used for orienting the flow of water to strike the runner.
- Grinding Stone costs: include the costs of two new grinding stones including taxes and transportation.
- □ Civil works costs have two components: (i) the construction materials such as cement, sand, steel etc and (ii) the labour costs for the masons and labour for dressing of stones.
- □ Installation and Commissioning charges are the costs for engaging a local civil contractor for installing and commissioning of the watermill upgrade.
- □ **Technical Assistance costs** include the manpower costs associated with services of a local intermediary who provides the technical services such as site appraisal, procurement, loan application and supervision of installation as well as co-ordinating with the manufacturers and the local banks on behalf of the miller.

Operation and Maintenance Cost Components

- **D** Replacement of base plates are required two times annually;
- □ Ball Bearings need to be replaced annually.
- □ Shisham Bushes have to be destroyed while removing base plates, so the replacements are similar to base plates.
- Grinding Stones are to be replaced once in two years
- $\hfill\square$ Tool Repair costs are estimates for maintenance and upkeep of tools
- □ Miscellaneous costs for operation and maintenance of upgrades.

ANNEX C

FINANCIAL ANALYSIS WORKSHEETS & ASSUMPTIONS

The worksheets on the following pages summarise the business returns that can be expected by investing I new watermill technology. Three scenarios are examined:

- (i) the best case among current upgrades is compared with
- (ii) an average upgrade case and
- (iii) the situation of a traditional watermill.

Table C1 summarises the costs, income and rate of return over ten years for the three scenarios. The detailed cash flow calculation for each case is included afterwards on separate worksheets.

In all cases the following assumptions were made:

Key Assumptions

- □ Investment and O&M costs have been assumed based on the experience with existing Watermills and cost estimates available as of May 2003;
- Conservative figures of grinding volumes of wheat and millets have been assumed for the upgraded watermills, based on the record of business volume by existing watermill upgrades representing average and best cases.
- □ Interest rate of 12.5%/year on diminishing balance and a three year loan period is assumed for the loan;
- Monthly repayments have been assumed and no moratorium is provided due to the small gestation period of one week;
- Discount rate is taken as 12.5%, equal to the commercial interest rate;
- A 10 year life of equipment is assumed;

Note:

A barter system (called 'Bhagwari') is prevalent in the region between the millers and the villagers wherein the miller is given a share of the milled flour (approximately 4%) instead of cash payments. The miller then sells his Bhagwari flour locally at the market rate.

Table C1: Business Summary for Three Scenarios

Performance of Upgraded Gharat (Best So Far)

Project Costs	
Project Cost	15340 Rs
Annual O&M costs	2060 Rs/year

Financing Parameters					
Interest rate	12.5%				
Loan term	3	years			
Installments/year	12	-			
Loan coverage	75%				

Business Income		
Total annual Bhagwari		3090 kg/year
Annual Bhagwari Wheat	60%	1854 kg/year
Annual Bhagwari Millet	40%	1236 kg/year
Bhagwari Wheat Price		8 Rs
Bhagwari Millet Price		6 Rs
Annual Income	2	2,248 Rs
-		
Economic Summary		
IRR (10 years)	104%	

NPV of net cashflow (10 years) 57,256 Rs

Milling Ou	tput					
		Milling	Milling	Bhagwar	i Bhagwai	ri
Season	Months	kg/day	Sub-tot	kg/day	Sub-tota	1
July-Oct	4	160	19200	12	1440 H	kg
Nov-Mar	5	107	16000	8	1200 k	kg
April-June	3	67	6000	5	450 k	
Annual To	tal		41200	kg/year	3090	kg/year

Performance of Average Upgraded Gharat

Project Costs			
Project Cost		15340	Rs
Annual O&M costs		1580	Rs/year
Business Income			
Total annual Bhagwari		2370	kg/year
Annual Bhagwari Wheat	60%	1422	kg/year
Annual Bhagwari Millet	40%	948	kg/year
Bhagwari Wheat Price		8	Rs
Bhagwari Millet Price		6	Rs
Annual Income		17,064	Rs
Farmente Originality			
Economic Summary			
IRR (10 years)	75%		
NPV of net cashflow (10 years)	38.472 Rs		

Financing Parameters		
Interest rate	12.5%	
Loan term	3	years
Installments/year	12	
Loan coverage	75%	

Milling Ou	utput					
		Milling	Milling	Bhagwari	Bhagwari	
Season	Months	kg/day	Sub-total	kg/day	Sub-total	
July-Oct	4	133	16000	10	1200	kg
Nov-Mar	5	80	12000	6	900	kg
April-June	3	40	3600	3	270	kg
Annual To	otal		31600	kg/year	2370	kg/year

Traditional Gharat

Project Costs		
Project Cost		2000 Rs
Annual O&M costs		740 Rs/year
Business Income		
Total annual Bhagwari		540 kg/year
Annual Bhagwari Wheat	60%	324 kg/year
Annual Bhagwari Millet	40%	216 kg/year
Bhagwari Wheat Price		7 Rs
Bhagwari Millet Price		5 Rs
Annual Income		3,348 Rs
Economic Summary		
IRR (10 years)	130%	
	8.636 Rs	

Financing Parameters		
Interest rate	12.5%	
Loan term	3 years	
Installments/year	12	
Loan coverage	75%	

Milling Ou	utput					
		Milling	Milling	Bhagwari	Bhagwari	
Season	Months	kg/day	Sub-total	kg/day	Sub-total	
July-Oct	4	26.7	3200	2	240	kg
Nov-Mar	5	27	4000	2	300	kg
April-June	3	0	0	0	0	kg
Annual To	otal		7200	kg/year	540	kg/year

Performance of Upgraded Gharat (Best So Far)

Project Costs		Financing Paramet	ers
Project Cost	15340 Rs	Interest rate	12.5%
Annual O&M costs	2060 Rs/year	Loan term	3 years
		Installments/year	12
		Loan coverage	75%

		Mill	ling Out	put				
	3090 kg/year				Milling	Milling	Bhagwar	i Bhagwari
60%	1854 kg/year	Sea	ison	Months	kg/day	Sub-tot	kg/day	Sub-total
40%	1236 kg/year	July	/-Oct	4	160	19200	12	1440 kg
	8 Rs	Nov	/-Mar	5	107	16000	8	1200 kg
	6 Rs	Apri	il-June	3	67	6000	5	450 kg
	22,248 Rs	Anr	nual Tot	al		41200	kg/year	3090 kg/yea

Economic Summary	
IRR (10 years)	104%
NPV of net cashflow (10 years)	57,256 Rs

Business Income Total annual Bhagwari Annual Bhagwari Wheat Annual Bhagwari Millet Bhagwari Wheat Price Bhagwari Millet Price Annual Income

MONTHLY and 10-YEAR CASH	I-FLOW C	ALCULA	ATIONS																																								
Month Days per month Year	0	Jan 31 <i>1</i>	Feb 28 1	Mar 31 <i>1</i>	Apr 30 1	May 31 <i>1</i>	Jun 30 <i>1</i>	Jul 31 <i>1</i>	Aug 31 1	Sep 30 1	Oct 31 1	Nov 30 1	Dec 31 1	Jan 31 2	Feb 28 2	Mar 31 2	Apr 30 2	May 31 2	Jun 30 2	Jul 31 2	Aug 31 2	Sep 30 2	Oct 31 2	Nov 30 2	Dec 31 2	Jan 31 3	Feb 28 3	Mar 31 3	Apr 30 3	May 31 3	Jun 30 3	Jul 31 3	Aug 31 3	Sep 30 3	Oct 31 3	Nov De 30 3 3 3	c 1 3 4	5	6	7	8	9	10
Outflows Project Cost Operation & Maintenance Loan repayments (see below) Monthly outflows Annual outflows	15340 15340	172 436 608	433	172 430 602	172 427 599	172 424 596	172 421 593	172 418 590	172 415 587	172 412 584	172 409 581	172 406 578	172 403 574 7095	172 396 568	172 393 565	172 390 562	172 387 559	172 384 556	172 381 553	172 378 550			172 369 541		172 363 535 5616	172 356 528	172 353 525	172 350 522	172 347 519	172 344 516			172 335 507		172 329 501	172 17 326 32 498 49 613	5	0	2060 0 2060	0	2060 0 2060	2060 0 2060	2060 0 2060
Inflows Bank Loan Millers Contribution Monthly Income from milling Annual Income	11505 3835		1854	1854	1854	1854	1854	1854	1854	1854	1854	1854 2	1854 2248	1854	1854	1854	1854 ⁻	1854 1	1854 1	1854 1	1854 1	854 1	854 1		1854	1854 1	1854 ⁻	1854 1	1854	1854	1854 1	1854 1	854	1854 1	854	1854 185 2224		22248	22248	22248	22248	22248	22248
Net Flows (monthly) Net Flows (annual)	-15340	1246	1249	1252	1255	1258	1261	1264	1267	1270	1273		1280 5153	1286	1289	1292	1295	1298	1301 1	304 1	1307 1	310 1	313 1		1319 5632	1326 1	1329 1	1332 1	1335	1338	1341 1	1344 1	347	1350 1	353	1356 135 1611:		20188	20188	20188	20188	20188	:0188
Loan Repayment Loan amount Opening Balance Principal Repayments Interest Repayments Total Payments Payable over the term	11505 13667	11505 320 117 436	114	10866 320 111 430	10546 320 108 427	10227 320 105 424	9907 320 102 421	9588 320 98 418	9268 320 95 415	8948 320 92 412	8629 320 89 409	8309 320 86 406	7990 320 83 403	7670 320 77 396	7350 320 74 393	7031 320 71 390	6711 6 320 68 387	6392 6 320 65 384	6072 5 320 62 381	5753 5 320 59 378	5433 5 320 55 375	113 4 320 52 372	794 4 320 49 369	1474 4 320 46 366	4155 320 43 363	3835 3 320 37 356	3515 3 320 34 353	3196 2 320 31 350	2876 320 28 347	2557 2 320 25 344	2237 1 320 22 341		16	320 12	959 320 9 329	639 32 320 32 6 326 32	D 3						

Performance of Average Upgraded Gharat

Project Costs			Financing Parame	eters	
Project Cost		15340 Rs	Interest ra	te 12.5	%
Annual O&M costs		1580 Rs/year	Loan ter	m	3 years
			Installments/ye	ar 1	12
			Loan coverage	je 75'	%
• -11					
Business Income			Milling Output		
Total annual Bhagwari		2370 kg/year		Milling	Milling
	000/				

2370 kg/year 1422 kg/year 948 kg/year 8 Rs 6 Rs

17,064 Rs

60% 40%

		Milling	Milling	Bhagwari	Bhagwari
Season	Months	kg/day	Sub-total	kg/day	Sub-total
July-Oct	4	133	16000	10	1200 kg
Nov-Mar	5	80	12000	6	900 kg
April-June	3	40	3600	3	270 kg
Annual To	otal		31600	kg/year	2370 kg

Economic Summary		
IRR (10 years)	75%	
NPV of net cashflow (10 years)	38,472 Rs	

Annual Bhagwari Wheat Annual Bhagwari Millet Bhagwari Wheat Price

Bhagwari Millet Price Annual Income

MONTHLY and 10-YEAR CAS	H-FLOW CALC	CULATION	S																																						_
Month Days per month Year	0	Jan 31 <i>1</i>	Feb 28 1	Mar 31 <i>1</i>	Apr 30 1	May 31 <i>1</i>	Jun 30 <i>1</i>	Jul 31 <i>1</i>	Aug 31 1	Sep 30 1	Oct 31 1	Nov 30 1	Dec 31 1	Jan 31 2	Feb 28 2	Mar 31 2	Apr 30 2	May 31 2	Jun 30 2	Jul Aug 31 31 2 2	g Se 1 3	ep Oct 80 31 2 2	Nov 30 2	Dec 31 2	Jan 31 3	Feb 1 28 3	Mar A 31 : 3	pr May 30 31 3 3	Jun 30 3	Jul 31 3	Aug 5 31 3	Sep 30 3	Oct N 31 : 3	ov De 80 3 3 3	c 1 3 4	5	6	7	8	S	9 10
Outflows Project Cost Operation & Maintenance Loan repayments (see below) Monthly outflows Annual outflows	15340 15340	132 436 568	132 433 565	132 430 562	132 427 559	132 424 556	132 421 553	132 418 550	132 415 547	132 412 544	132 409 541	132 406 538	132 403 534 6615	132 396 528	132 393 525	132 390 522	132 387 519	132 384 516	132 381 513	132 132 378 375 510 507	2 13 5 37 7 50	2 369	132 366 498	132 363 495 6136	132 356 488	132 353 485	132 1: 350 3: 182 4	32 132 47 344 79 476	132 341 473	132 338 470		332	132 1; 329 3; 461 4;	26 32	5	0	0	1580 0 1580	0	1580 (1580	0 0
Inflows Bank Loan Millers Contribution Monthly Income from milling Annual Income	11505 3835	1422	1422	1422	1422	1422	1422	1422	1422	1422	1422	1422	1422 17064	422	1422	1422	1422	1422	1422 14	422 1422	2 142	22 1422	1422	1422 17064	1422	1422 14	422 14	22 1422	1422	1422	1422 14	422 14	422 142	22 142 17064		17064	17064	17064	17064	17064	4 17064
Net Flows (monthly) Net Flows (annual)	-15340	854	857	860	863	866	869	872	875	878	881	884	888 10449	894	897	900	903	906	909	912 915	5 91	18 921	924	927 10928	934	937 9	940 9	43 946	949	952	955 9	958	961 9	64 96 11408		15484	15484	15484	15484	15484	4 15484
Loan Repayment Loan amount Opening Balance Principal Repayments Interest Repayments Total Payments Payable over the term	11505 Rs 13667 Rs	11505 320 117 436	11185 320 114 433	10866 320 111 430	10546 320 108 427	10227 320 105 424	9907 320 102 421	9588 320 98 418	9268 320 95 415	8948 320 92 412	8629 320 89 409	8309 320 86 406	7990 320 83 403	7670 320 77 396	7350 320 74 393	7031 320 71 390	6711 320 68 387	6392 320 65 384	320 ÷	753 5433 320 320 59 55 378 375) 32 5 5	20 320 52 49	320 46	4155 320 43 363	3835 320 37 356	0010 0	196 28 320 3 31 3 350 3	76 2557 20 320 28 25 47 344	2237 320 22 341	1918 320 19 338	320 3 16	320 12	959 63 320 32 9 329 32		0 3						

Traditional Gharat

Business Income Total annual Bhagwari Annual Bhagwari Wheat Annual Bhagwari Millet Bhagwari Wheat Price

Bhagwari Millet Price Annual Income

Project Costs	
Project Cost	2000 Rs
Annual O&M costs	740 Rs/year

			Milling O	utput				
	540	kg/year			Milling	Milling	Bhagwari	Bhagwari
60	% 324	kg/year	Season	Months	kg/day	Sub-total	kg/day	Sub-total
40	% 216	kg/year	July-Oct	4	26.7	3200	2	240 H
	7	Rs	Nov-Mar	5	27	4000	2	300 H
	5	Rs	April-June	3	0	0	0	01
	3,348	Rs	Annual T	otal		7200	kg/year	540 H

Financing Parameters Interest rate 12.5%

Loan term Installments/year Loan coverage .5% 3 years 12 75%

240 kg 300 kg

0 kg 540 kg/year

Economic Summary	
IRR (10 years)	130%
NPV of net cashflow (10 years)	8,636 Rs

MONTHLY and 10-YEAR CASH	I-FLOW CAL	CULATION	NS																																								
Month Days per month Y <i>ear</i>	0	Jan 31 <i>1</i>	Feb 28 1	Mar 31 <i>1</i>	Apr 30 1	May 31 <i>1</i>	Jun 30 1	Jul 31 <i>1</i>	Aug 31 <i>1</i>	Sep 30 1	Oct 31 1	Nov 30 1	Dec 31 1	Jan 31 2	Feb 28 2	Mar 31 2	Apr M 30 2	May J 31 2	un J 30 3 2	ul Aug 11 31 2 2	Sep 30 2	Oct 31 2	Nov 30 2	Dec 31 2	Jan 31 3	Feb 1 28 3	Mar 31 3	Apr M 30 3	ay . 31 3	lun 30 3	Jul A 31 3	ug Si 31 : 3	ep C 30 3	0ct No 31 3 3	ov Dec 10 31 3 3	4		5	6	7	8	9	10
Outflows Project Cost Operation & Maintenance Loan repayments (see below) Monthly outflows Annual outflows	2000 2000	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62 740	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 6 0 62 6	2 62 0 0 2 62	62 0 62	62 0 62	62 0 62	62 0 62 740	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	62 0 62	0	2 62 0 0 2 62 740	740 0 740		0	740 0 740	740 0 740	740 0 740	740 0 740	0
Inflows Bank Loan Millers Contribution Monthly Income from milling Annual Income	0 2000	279	279	279	279	279	279	279	279	279	279	279	279 3348	279	279	279	279 2	279 2	79 27	9 279	279	279		279 3348	279	279	279	279 2	79 2	179 2	179 2	79 2	79 2	79 27	9 279 3348		334	18 3	3348	3348	3348	3348	3348
Net Flows (monthly) Net Flows (annual)	-2000	217	217	217	217	217	217	217	217	217	217	217	217 2608	217	217	217	217 2	217 2	17 21	7 217	217	217	217	217 2608	217	217 2	217	217 2	17 2	217 2	17 2	17 2	17 2	17 21	7 217 2608	2608	260	18 2	2608	2608	2608	2608	2608
Loan Repayment Loan amount Opening Balance Principal Repayments Interest Repayments Total Payments Payable over the term	0 Rs 0 Rs	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0 0 0 0 0								