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Summary

Introduction

Large parts of the world cope with problems of water supply during periods of low rainfall and
consequent low or no river discharge. Kitui District is a semi arid region in Kenya where, during
the dry season, communities in rural areas almost completely rely on water abstraction through
hand-dug wells (scoop holes) in the dry sand riverbeds. To increase water availability during the
dry season, SASOL (a local NGO) builds sand storage dams. The construction of sand dams has
turned out to be very successful in increasing groundwater storage capacity, prolonging the
period of groundwater availability (bridging dry seasons) and improving water quality.

Research

To use the experiences in Kitui District to successfully construct sand storage dams in other parts
of Kenya and other countries, the Acacia Institute and SASOL started the ‘Recharge Techniques
and Water Conservation in East Africa - Up-scaling and Dissemination of the good practices with
the Kitui sand storage dams’ project in 2005. The project is funded by Aqua for All (A4A), a Dutch
NGO, and the VU University Amsterdam (VUA). In October 2005, the Acacia Institute started with
a measuring programme around the Kwa Ndunda sand dam in the Kiindu catchment (Kitui
District, Kenya; UTM WGS 37S 389200 m East, 9838380 m North) to understand processes
regarding functioning of these dams in terms of groundwater storage. The results formed the
base of this study performed in October and November 2006, concentrating on the same sand

dam and focusing on local groundwater dynamics.

Groundwater model

To determine the physical parameters accountable for successful implementation of sand storage
dams and to study the impacts on groundwater flow and storage, a groundwater modeling effort
is performed. The model is set up in the Triwaco modeling environment (calculations performed
by Flairs) on the Kwa Ndunda sand dam. The above-mentioned field visits in 2005 and 2006
provided data forming the input for the set up and calibration of the groundwater model. The
model is used to run several scenarios, through which the effects of the sand storage dam on
groundwater levels and storage are tested (using the scenario without sand dam), as well as
influences of increasing dam height and riverbank infiltration on functionality of the sand dam.
Additionally, effects of groundwater abstraction are studied.

Fieldwork
During the field visits, piezometers are installed around the Kwa Ndunda sand dam, arranged in
cross sections perpendicular to the riverbed, both upstream (50 meter) and downstream (100 m)
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of the sand dam and next to the sand dam. From October 2005 forward, groundwater levels are
measured manually on a daily interval and twice a day during wet seasons. Precipitation is
measured manually on a daily interval from the fieldwork 2005 onward.

Through augering and geophysical techniques, thicknesses of subsurface layers as well as depth
of the basement are determined. Hydraulic properties (e.g. hydraulic conductivity and porosity) of
the subsurface layers are determined through several techniques. Hydrochemistry is used to
determine evaporation of soil water. In combination with the results of Jansen (2007), discussing
the fraction of precipitation infiltration the subsoil, groundwater recharge is determined.

Function and influence of sand dams on groundwater flow and storage

Sand dams are small concrete check dams build in the riverbed perpendicular to the flow
direction. Behind the dam fast sedimentation occurs, causing an enlargement of the natural sand
aquifer present in the riverbed. Groundwater flow through the permeable riverbed is obstructed,
creating a groundwater reservoir upstream of the sand dam. During the dry season, the reservoir
is replenished through groundwater flow through the riverbed and by flow from the riverbanks
towards the bed outside the zone of influence of the sand dam. Within the zone of influence,
elevated heads in the riverbed upstream of the sand dam result in groundwater flow from the
riverbed into the banks and through the banks around the sand dam. Downstream of the sand

dam groundwater flow is oriented towards the riverbed.

Sand dams effectively increase the volume of groundwater available for abstraction as well as
prolonging the period in which groundwater is available for abstraction. From model results, it
follows that in absence of the sand dam the riverbed dries up within 1.5 months from the start of
the dry season, while in presence of a sand dam the riverbed still contains approximately 580 m®
groundwater in the riverbed over a length of 200 meter upstream of the sand dam. Continuous
replenishment from the riverbanks ensures the volume to be sufficient to bridge the period of

drought until the next rain season.

The coarse sand enables the fast response of the groundwater table on precipitation and protects
groundwater from excessive evaporation because of low capillary forces and increased thickness
of the sand layer in the riverbed. After the first heavy rainfall event, the riverbed aquifer is
recharged completely and the river starts to flow, leading to the conclusion that downstream
areas are not significantly influenced by refilling of the larger aquifer.

Parameters of importance to successful functioning of sand dams
Thickness of the sand layer in the riverbed and hydraulic conductivity and thickness of the
sediment layer in the riverbanks significantly influence the reaction of groundwater levels on
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precipitation, groundwater recession curves and the volume of groundwater stored in the
riverbed. Higher hydraulic conductivity leads to a less pronounced response of groundwater
levels to precipitation. Additionally, groundwater flow velocity is higher, together resulting in a
faster leveling out of heads and a faster decline in the volume of water stored in the riverbed.
Hydraulic conductivity and thickness of the weathered rock layer and flood depth have less

influence on model results.

Improving functionality sand dams

Increasing riverbed thickness by enhancing the height of the sand dam has the most direct
positive effect on groundwater availability. An increase of 0.75 meter results in an increase of
groundwater storage in the riverbed from 500 m® to 1590 m® while having a negligible effect on
the downstream area. The effect is largest during the dry season, which is the most crucial
period. It can however not be established with certainty what happens if this measure is applied
to a cascade of dams. Increasing dam height with more than 0.75 meter causes lower
groundwater levels in downstream areas because rainfall events are not large enough to fill the
aquifer in the riverbed in one wet season.

It is however not necessary to increase the height of the sand dam, since groundwater
abstraction as performed momentarily (approximately eight m*/day) influences groundwater levels
only very locally. This is caused by the fact that abstraction is compensated by groundwater flow
from the banks towards the riverbed. Potential groundwater harvest from an aquifer upstream of a
sand storage dam is thus larger than the volume of water present at a certain moment in time in
riverbed.

Applying land husbandry techniques will, besides other positive effects on for example erosion,
further increase the volume of groundwater available for abstraction. This might be necessary

when groundwater will be used for irrigational purposes on larger scale.

Application of the model in other areas

The groundwater model can be used as an indication of the effect of building a sand storage dam
in the riverbed in terms of the volume of water stored in the riverbed, potential storage in
riverbanks and the period in which groundwater is available for abstraction. To this aim, generic
data, such as a SRTM DEM, VESses, approximate precipitation data and literature values of
hydraulic parameters, can be used as input to the model.
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calculated by the calibrated model as an effect of variation in thickness of the riverbed

Table A7.6 Average volume difference (m3/timestep) compared to the groundwater storage in the riverbed
calculated by the calibrated model as an effect of variation in groundwater recharge

Table A7.7 Average volume differences (m3/timestep) compared to the groundwater storage in the riverbed
calculated by the calibrated model as an effect of variation in flood depth
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1 Introduction

This chapter points out the functionality of sand storage dams to provide water to communities in
semi arid regions, explains the significance of this study through objectives and a justification,

and gives an outline of the report.

1.1 Sand storage dams
Large parts of the world cope with the problem of water supply during periods of low rainfall and

consequent low or no river discharge. Climate change further decreases the reliability of rainfall,
both spatially and temporally. In addition, populations are increasing, thereby enlarging the water
demand. The answer to this problem lies in increasing water storage to bridge periods of drought

and thereby securing water supply to communities.

One of the successful examples of a rural water conservation program is the construction of sand
storage dams in Kitui District in Kenya (Figure 1.1a and cover picture). This program is initiated
by SASOL (Sahelian Solution Foundation), a NGO founded in 1992. The main objective was
shortening the distance of communities to water sources to less than two kilometers whilst
making water available for productive use. To this aim, SASOL assists communities to address
water scarcity in rural areas by constructing sand storage dams. The program is funded by the
Kenyan Ministry of Water and foreign agencies. To date, almost 500 dams have been
constructed, serving about 100 000 people with water during the dry season (Munyao et al.,
2004).

Figure 1.1a Typical sand storage dam during the dry season (Borst et al., 2006)
Figure 1.1b Schematic cross section of a typical sand storage dam (Borst et al., 2006)

1.1.1 Principle of sand storage dams
Sand storage dams are small concrete check dams built in the riverbed of ephemeral rivers

perpendicular to the flow direction. Upstream of the sand dam fast sedimentation occurs, which is
regarded a problem considering surface water dams. However, sand accumulating behind these
dams has a large grain size diameter, thereby enlarging the natural aquifer. An enlargement of
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groundwater storage capacity compared to a situation without a sand dam is the result (Figure
1.1b). In addition, the dam obstructs groundwater flow through the riverbed, creating a
groundwater reservoir upstream of the sand dam. During the dry season, groundwater is
abstracted manually by means of scoop holes (hand dug wells in the riverbed) as has been done
traditionally for thousands of years in semi arid and arid areas (Nissen-Petersen, 1997; Figure
1.2). Increasingly, wells are built. During the short wet seasons, the river floods and surface water
instead of groundwater is used for domestic purposes.

Figure 1.2 Groundwater abstraction from the riverbed by means of a scoop hole (10-10-2006)

Tuinhoff et al. (2002) acknowledge the importance of groundwater storage as water resource
through comparing subsurface storage dams with surface water reservoirs. As concluded by
Borst et al. (2006), the advantages of subsurface water storage over open water storage are
evident and mainly related to increased water availability (larger yield, longer availability) and
higher water quality caused by protection against evaporation and contamination and by filtration
through groundwater flow (Borst et al., 2006). Additionally, malaria mosquitoes are limited in their
propagation due to the absence of open water.

The effectiveness of subsurface storage is underscored by Wheater (unknown publication date),
who argues it minimizes evaporation loss and can provide long-term yields from infrequent
recharge events. Furthermore, he states recharge of alluvial groundwater systems interacting
with ephemeral rivers can provide appropriate water resources, although quantification of the
sustainable yield of such systems is necessary to enable appropriate resource development.
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The concept of constructing sand dams in large numbers has turned out to be very successful in
increasing groundwater storage and improving water quality. Water is now available within short
distances from the homesteads, and people have improved their livelihoods significantly by
engaging in small-scale irrigation for growing food- and cash crops (De Bruijn, et al., 2006).
Additionally, the natural vegetation in the Kitui region is regenerating.

1.2 Research
In 2005, the Acacia Institute and SASOL started the ‘Recharge Techniques and Water

Conservation in East Africa — Upscaling and Dissemination of the good practices with the Kitui
sand storage dams’ project. The goal is to use experiences in Kitui District for successful
construction of sand storage dams in other parts of Kenya and in other countries. The project is
funded by Aqua for All (A4A), a Dutch NGO, and the VU University Amsterdam (VUA).

To understand the processes regarding the functioning of sand storage dams in terms of
groundwater storage, the Acacia Institute started with a measuring programme around the Kwa
Ndunda sand dam in the Kiindu catchment (Kenya) in October 2005. The results are described in
Borst et al. (2006), providing insight in the principle of sand storage dams and giving an
estimation of the effects of these dams on the water balance. The results formed the base of the
field study performed in October and November 2006, concentrating on the same sand dam.
Currently the Acacia Institute is, in cooperation with the Dutch RAIN (Rainwater Harvesting
Implementation Network) Foundation, SASOL and Ethiopian NGO'’s, in the process of identifying
suitable catchments in southern Ethiopia to construct a cascade of several dams. The initiative is
recently awarded the Swiss Re International ReSource Award for Sustainable Watershed

Management, proving the relevance of the hydrological research.

1.2.1 Objectives
The second phase of the ‘Recharge Techniques and Water Conservation in East Africa — Up-

scaling and Dissemination of the good practices with the Kitui sand storage dams’ project aims to
provide more information on the following subjects.
e Determining parameters of importance for successful functioning of a sand dam and
providing a GIS model which can be used to identify potential sand dam areas, described
by Gijsbertsen (2007),
e Measuring and modeling the influence of sand dams on the rainfall-runoff relation in a
semi-arid catchment, described by Jansen (2007),
e Improving understanding of hydrological processes, analysing relative importance of
physical parameters in the successful functioning of sand dams and studying the impacts
of a sand dam on the hydrology of the area (this report).
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To the aim of the last objective, this research focuses on local groundwater dynamics in and
around a sand dam through field study and a modeling effort. The following questions need to be
answered through the model effort.

e  Which physical parameters determine the successful implementation of the sand storage

dam technology?

¢ How does the presence of a sand storage dam influence groundwater flow?

e What is the net effect of the sand storage dam on groundwater availability?

e How large is the loss of water through presumed groundwater flow around a sand

storage dam?

1.2.2 Justification
Results of the water balance study presented by Borst et al. (2006) are based on data including

one wet season, which was regarded exceptionally dry, and the beginning of the following dry
season. Insight in spatial and temporal patterns in groundwater flow was therefore limited. Hut et
al. (2005) has set up a mathematical model to provide insight in groundwater flow around a single
dam in a Matlab environment. Orient Quilis (2007) designed a Modflow model to study interaction
between several sand dams and long-term effects on groundwater levels. Both models are
theoretically based. The model presented in this report is a physically based numerical
groundwater model, based on and calibrated with data collected during field visits in 2005 and
2006 (Chapter 6).

De Hamer (2007) has set up a finite difference groundwater model in MODFLOW to perform a
water balance study of an alluvial aquifer in southern Zimbabwe based on 2 months of
groundwater level measurements. However, the riverbanks, which are suspected to play an

important role in groundwater storage, are not incorporated in the model (Borst et al., 2006).

The model, set up in the Triwaco modeling environment (Royal Haskoning, 2004; Triwaco),
calculates groundwater dynamics in and around a sand dam and is applied to answer the

questions mentioned above.

The research is performed as part of the Master program Hydrogeology at the VU University
Amsterdam, covering the Master Thesis Hydrogeology (code 450122, 27 ECTS), coordinated by
Dr. J. Groen and Dr. M. J. Waterloo.

1.3 Outline of the report
To meet the objectives described above, the presentation and discussion of results of the field

study in 2006 is spread over three reports. Jansen (2007) discusses the methodology and results
(precipitation, runoff plots and discharge) related to the set up, calibration and application of the
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surface water model. Gijsbertsen (2007) gives a description of activities to gather data forming
the basis of the GIS model which is set up to indicate areas with particular potential to apply the
sand storage dam technology. Furthermore, he discusses collecting and processing sediment
samples as well as the visits to other catchments.

This report will discuss the hydrological processes related to sand dams and reveal the
hydrological impacts of a sand dam on groundwater flow and storage. Furthermore, it will provide
insight in the parameters influencing the functioning of these dams. The report has the following
outline.

Chapter 2 will introduce the field area and discusses a literature study on groundwater flow
models. Chapter 3 deals with the field methodology. Chapter 4 describes results of the field
study, which are discussed in Chapter 5. Based on the field results and literature study, Chapter 6
describes the set up of the conceptual model. Chapter 7 deals with the calibration of the model,
containing the sensitivity analysis, optimal parameter values, calibration results and a reliability
analysis. Chapter 8 discusses the model results of the calibrated model. Chapter 9 discusses
model application through four scenarios of which the set up and model results are described and
discussed. Chapter 10 gives an overall conclusion of the model effort. The last chapter, Chapter
11, gives recommendations for further research.
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2 Background

This chapter will give a brief overview of the study area, focusing on location, topography,
geology and hydrogeology of the region. A more detailed description of these subjects on a

regional scale can be found in the report of Borst et al. (2006).

2.1 Geography
Kitui District is part of Kenya’s Eastern Province and is located between UTM coordinates 510000

m East, 10000000 m North and 344000 m East and 9662000 m North (zone WGS84 37S). The
capital of the district is Kitui town, located about 150 km East of Nairobi (Figure 2.1a).

The case study focuses around the Kwa Ndunda sand dam located in the river Kiindu (Figure
2.1b; UTM 389200 m East, 9838380 m North), a seasonal river about 10 km South of Kitui town.
The catchment area is located between the towns Wikililye in the North (UTM 390230 m East,
9845760 m North), Mulango and Kyangunga in the East (UTM 390000 m East, 9837850 m North)
and Yakalia and Kangalu in the West (UTM 386000 m East, 9838000 m North). The Kiindu river
has a total length of 16 km and drains into the Nzeeu river in the South. The Kiindu catchment
has a surface area of about 37 km®. The elevation varies between 950 and 1140 m above sea
level sloping southward (Figure 2.1).

Figure 2.1a Location of the Kiindu Catchment, Kitui District, Kenya (googlemaps.com)
Figure 2.1b Location of the Kwa Ndunda sand dam in the Kiindu Catchment
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2.2 Climate
The climate is semi arid (Louis Berger International Inc., 1983). Rainfall in Kitui District is

seasonal with two wet seasons; October to February and March to May, respectively the short
rains and long rains. The short rains are more reliable compared to the long rains. Approximately
90% of the expected annual rainfall occurs during the rain seasons (Biamah et al., 2004). The
topography of the landscape influences the amount of rainfall received (ALRMP). The area
around Kitui town receives between 760 and 1270 mm precipitation per year, but shows large
fluctuations between years (Borst et al., 2006).

In the light of this project, precipitation is measured continuously since October 2005 (Paragraph
4.2.1).

Kitui District experiences high temperatures throughout the year, ranging from 16 °C to 34 °C. The
highest temperatures occur during June to September and January to February. The minimum
mean annual temperature is 25 °C, the maximum mean annual temperature is 30 °C (ALRMP).
According to Opere et al. (2002), average daily evaporation is approximately 6 mm.

2.3 Vegetation
Around Kitui Town, vegetation is sparse and predominantly drought resistant, consisting mainly of

dry woodlands and bush lands. The area has medium to low potential for plant growth (Kigomo,
unknown publication date). Natural vegetation consists mainly of Acacia’s and other thorny
bushes, e.g. Acacia clavigera, Acacia nilotica, Acacia seyal, Terminalia combretum and
Commiphora sp. (Katumo, 2001). However, along the riverbed less drought resistant species can
exist (Figure 2.2).
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Figure 2.2 Overview of the zone next to the riverbed at the Kwa Ndunda sand dam during the dry season
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The patches of natural vegetation are scattered and cut by agricultural fields. Agricultural plots
are located on the riverbanks. During the dry season, agricultural fields are bare (Figure 2.3).
During the wet season, crops are cultivated (e.g. maize, cow pies and sukuma wiki). Papaya and
mango trees are planted locally at the wetter sites in the field (e.g. along the base of terrace
walls). However, these are not very abundant in the study area.

£ d
Figure 2.3a Riverbank at the end of the dry season (12-10-2006)
Figure 2.3b Riverbank at the beginning of the wet season (25-10-2006)

Vegetation responds rapidly on precipitation (Borst et al., 2006). At the end of the dry season,
vegetation cover is very sparse. As soon as the first rains fall, vegetation starts to grow (Figure
2.4).

Figure 2.4a Runoff plot on an agricultural field on the silty bank at the end of the dry season (10-10-2006)
Figure 2.4b The same runoff plot during the wet season (02-11-2006)

Soils are medium-textured ferrasols, predominantly consisting of moderately deep chromic
luvisols (Kigomo, unknown publication date). Paragraph 4.3 presents the results of the augerings
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performed in the riverbed and banks during the field visits. Gijsbertsen (2007) discusses grain
size analysis of the soils in the Kiindu catchment in further detail.

During the dry season, a soil crust forms covering the riverbanks. In addition, drought cracks
develop, although predominantly in clayey soils (Figure 2.5). After a few rainfall events, the soil
crust softens and disappears and drought cracks close.

Figure 2.5a Cracks in clayey soil at the western riverbank at the end of the dry season (10-10-2006)
Figure 2.5b Crusting of silty soil at the end of the dry season (10-10-2006)

2.5 Hydrogeology

2.5.1 Regional setting
The basement system is formed by Precambrian crystalline metamorphic rocks (gneisses and

schissts) of are at least 540 Ma, showing a regional North-South trend in foliation. This
corresponds to the geology of the Mozambique belt, which is of Proterozoic age (2,500 Ma — 540
Ma BP) and is found in large parts of East Africa.

The basin outlining the present morphological features is formed during Paleozoic tectonic
activity, influencing erosion during the Tertiary (65 Ma — 2 Ma BP) and erosion and deposition
during the Quaternary (2 Ma BP until present). Quaternary sediments exist primarily of alluvium,
limestone, sand, clay and silt and are present on hill slopes and in riverbeds (Table 2.).

A geological map is enclosed in Appendix 1.

10
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Table 2.1 Overview of geological events in Kitui District (after Borst et al., 2006).
Period Process Products

Precambrium Tectonics and metamorphism gneisses and schissts

(Achaean, Proterozoic)

Erosion, peneplanation

Paleozoic Forming of basin by tectonic Shales and sandstones
(Carboniferous — Permian) activity and faulting.

Tertiary (Miocene) Tectonic activity Intrusives and dikes
Quaternary Erosion, local sedimentation Soils, sands, alluvium,

limestone, clays, silts

2.5.2 Case study area
In the Kiindu catchment, hardrock mainly consists of granitoid and biotite gneisses intersected by

pegmatite veins. Granitoid gneiss is a little more resistant to erosion as compared to biotite
gneiss. Layers vary in width between half a meter to tens of meters. Locally some quartzites as
well as layers of saline rock and limestone (Kunkar Limestone, precipitation after the weathering
of other rock) appear between the gneisses. The dip of the hard rock varies between 0° and 35°.
The gneisses form the basement of the area, underlying weathered rock formed through erosion
during the Quaternary. Thickness of the layer and degree of weathering differ throughout the
area. On top of the weathered rock, a layer consisting primarily of clay and silt on the riverbanks
and sand or silt in the riverbeds is present. At the location of the Kwa Ndunda sand dam, the
riverbed is filled with coarse sand, which is an erosion product of different lithological units,
especially gneisses. Thickness of this layer varies between a few centimeters and more than 2
meters, caused by the irregular shape of the basement. Properties of the sediment and
weathered rock layers (e.g. thickness and hydraulic properties) in the area around the Kwa
Ndunda sand dam are determined during the fieldworks. The results are presented in Paragraph
43.

2.6 Hydrology and hydrogeology

2.6.1 Surface water
Due to limited rainfall, surface water sources are very scarce. Most rivers, such as the Kiindu

river, are ephemeral. These rivers flow during the wet season and generally dry up within one
month after the end of the wet season.

Most seasonal rivers in Kitui District drain to the river Tana, a perennial river draining into the
Indian Ocean. The river Athi, the second perennial river in Kitui District forms the western and
southern borders of Kitui District (Figure 2.6).

Surface water hydrology of the study area will be discussed in more detail in Jansen (2007).

11
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Figure 2.6 False color composite satellite image of the Southern part of Ken

(Borst et al. 2006)

2.6.2 Groundwater
In Kitui District three main groups of aquifers are recognised (Louis Berger International Inc.,

1983); Quaternary superficial deposits, Tertiary rocks, Paleozoic sedimentary rocks and
Precambrium crystalline rocks.

Tertiary volcanic rocks, forming poor aquifers, and sandstones of Paleozoic age, forming good
aquifers, are not present in the Kiindu catchment (Borst et al., 2006). However, metamorphosed
crystalline Precambrian rocks (schissts and gneisses) underlie most of Kitui District, including the
study area. Schissts and gneisses are poor aquifers, although locally water can be stored in
fractures, faults, joints and weathered zones. Gneisses are intersected by quartzite veins, forming
good aquifers, which can provide water for cities such as Kitui Town. Important recharge zones
are located in the hills of Northern and Central Kitui, in the Miambani and Migwani Ridges.

12
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The Precambrian aquifer is not accessible for manual groundwater abstraction as performed by
small communities throughout Kitui District. For these communities, Quaternary sediments and
the weathered zone of the Precambrian rocks are the primary water supply. Therefore, these
aquifers are incorporated in the modeling effort, as described in Paragraph 6.5.

The alluvial aquifers of Quaternary age from good shallow aquifers. At locations where basement
is at shallow depth, natural barriers against groundwater flow through the riverbed are formed.
Upstream of these barriers, shallow groundwater reservoirs are formed from which water is
extracted through scoop holes. Sand dams are preferably built at these locations (Nissen-
Petersen, 2006).

Unconsolidated deposits on the riverbanks are less good aquifers, consisting predominantly of silt
and clay. However, the importance of riverbanks for groundwater flow and storage will become
clear in Paragraph 8.1.

2.6.3 Groundwater quality
Water quality is barely influenced by the metamorphous rocks forming the basement in the Kiindu

catchment because of limited chemical weathering. Locally, groundwater quality might be
influenced significantly by occurrence of layers of saline rock and limestone. Although water
quality is not of main concern during this study, water chemistry is used to determine evaporation

from the subsoil.

2.7 Literature
The publication of Borst et al. (2006) is used to outline the field visit which focused on enlarging

insight in groundwater level fluctuations further in the riverbanks, gathering more insight in
groundwater recharge and collecting more information on the subsurface (both stratification and
hydrological properties). Although a water balance study was performed, insight in spatial and
temporal patterns in groundwater flow was limited. This groundwater modeling effort focuses on
groundwater dynamics around sand dams, determining which physical parameters are essential
in the successful functioning of sand dams and quantification of the increase in storage capacity.
To this aim, the conceptual model of Borst et al. (2006) is modified based on the data gathered
during the fieldwork in 2006.

Orient Quilis (2007) has set up a groundwater model using Modflow to analyze behavior of a
cascade of sand storage dams and to determine water loss to the deeper groundwater as well as
effects on a longer time scale. Hut (2006) has set up a groundwater model to study groundwater
flow around a single sand dam in the Matlab environment, based on the Bousinesq equation.
Both models are theory based, which is in contradiction to the groundwater model presented in

this report of which the conceptual model is based on data gathered during fieldwork around the

13
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Kwa Ndunda sand dam and which is calibrated with 1.5 years of groundwater level

measurements.

Results of the model effort of Orient Quilis (2007) together with the preliminary results of this
modeling effort were presented as a poster presentation on the General Assembly of the
European Geosciences Union, Vienna, April 2007 (Appendix 2). Furthermore, a paper entitled
‘Determining the reputation of a thousand years by the conduit of one hour — Modeling
hydrological processes of sand-storage dams on different temporal scales’ (Orient Quilis et al.,
2007) is published in this light.

De Hamer (2007) performed a study in a small river catchment in the arid southern part of
Zimbabwe. Three coupled models are used to simulate the hydrological processes; a rainfall-
runoff model, a spreadsheet-based water balance model of the dam reservoir and a finite
difference groundwater model in Modflow to simulate the water balance of the alluvial aquifer.
The riverbanks are not incorporated in the model. However, these are suspected to play an
important role in groundwater storage based on the fieldwork in the Kiindu catchment.

In Paragraph 6.1, field results are combined with a literature study on hydrological processes in

small-scale semi arid catchments, together resulting in the conceptual model.
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3 Field methodology

This chapter discusses measurement techniques applied during the fieldwork in 2006 and of
which the results form the input for the set up and calibration of the groundwater model. Data
were gathered on groundwater levels, precipitation, water chemistry and properties of the
subsurface (thicknesses of layers and hydraulic properties, e.g. porosity and hydraulic

conductivity).

3.1 Groundwater levels
To provide information concerning groundwater flow patterns and changes in them as a

consequence of wet and dry seasons, piezometers were installed around the Kwa Ndunda sand
dam (UTM 389200 m East, 9838380 m North). Groundwater level fluctuations will be used to
evaluate and adapt the conceptual model of Borst et al. (2006). Furthermore, calibration of the

groundwater model is based on the measured groundwater levels (Chapter 7).

During the fieldwork in October 2005, 21 piezometers were installed around the Kwa Ndunda
sand dam by Borst et al. (2006). The piezometers were arranged in cross sections perpendicular
to the riverbed, both upstream (50 meter) and downstream (100 m) of the sand dam and in the
eastern riverbank next to the sand dam. During the field study, diver data loggers (Van Essen
Instruments, The Netherlands) were installed in piezometers p02, p04, p06, p14 and p15,
measuring pressure and temperature (Figure 3.1, Appendix 3). To correct for barometric
conditions a barometric data logger (Van Essen Instruments, The Netherlands) was installed at
the home of Mrs. Christina Paul on the eastern bank of the Kiindu catchment (UTM 38939 m
East, 9838422 m North). The setup provided measurements of groundwater levels on a half hour
time interval from October 2005 to the end of November 2005. Additionally, a community member
was employed to measure groundwater levels manually using a sounding device with measuring
tape (Eijkelkamp Agrisearch Equipment, The Netherlands) on a daily interval (and twice a day
during the rain season). The piezometers were not removed after the fieldwork in 2005, thereby
enabling continuation of the daily groundwater level measurements. However, one piezometer
got clogged (p03) and four were destroyed during floods (p05, p06, p16 and pi17). To
compensate for the losses and to study the groundwater level fluctuations of the riverbanks in
more detail, seven piezometers (p22 to p28) were installed during the fieldtrip in 2006. Divers
(Van Essen Instruments, The Netherlands) were placed in piezometers p04, p22, p25, p27
(groundwater) and in p28 (surface water), hereby providing continuous measurement of
groundwater levels in a profile perpendicular to the riverbed. The measurement interval was set
to 2 minutes to measure the quick response of groundwater levels on precipitation (especially in

the riverbed) at the start of the wet season in detail. Unfortunately, two divers (from p27 and p28)
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were not accessible at the end of the field trip because of high surface water levels. Possibly,
these divers can be retrieved later during the dry season. Divers were left behind in piezometers
p04, p25 and p28, performing measurements at 5 minute intervals.

Manual measurements are still performed at publication of this report; Mr. Munyoki is collecting
the groundwater level measurements (both manual and automatic) at regular base and sends it to

the Acacia Institute.
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Figure 3.1 Locations of piezometers around the Kwa Ndunda sand dam in December 2006 (Appendix 3)

Data are referenced with respect to the lowest part of the Kwa Ndunda sand dam as described in
Appendix 4.

A description of the methodology on creating and installing piezometers is given in Borst et al.
(2006). Specifications on location, depth of the piezometers and length of the screen are attached

in Appendix 5.

3.2 Subsurface

3.2.1 Augering
Depth of the basement and thicknesses of subsurface layers form the foundation of the

groundwater model. Borst et al. (2006) mapped two soil profiles at the locations of the
piezometers based on soil sampling during borehole construction. These profiles provide
information on the stratigraphy and depth of the basement. Auger cores were interpreted primarily
based on grain size and color, as described by Borst et al. (2006). During the field visit in 2006,
more boreholes were made on the upstream array at the locations of piezometers p22, p25, p26,
in the riverbed (p23, p24, p27 and p28) and near runoff plots on the eastern riverbank (Figure 3.5,
Appendix 3).
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3.2.2 Vertical Electrical Soundings
In addition to the augerings, 16 Vertical Electrical Soundings were preformed using the ABEM

terrameter on the eastern and western riverbanks, both upstream and downstream of the Kwa
Ndunda sand dam. The electrodes were arranged according to the Schlumberger configuration.
Reynolds (2003) discusses details on Vertical Electrical Sounding according to the Schlumberger
configuration.

The results were interpreted using SchlumBG (VU University, Amsterdam). Variation of actual
resistivity and layer thickness has to result in a fit between measured and modeled apparent
resistivity. However, the solution is not unique (several combinations of layer thickness and actual
resistivity can result in the same apparent resistivity). Thereto, borehole data were used on a

number of locations to verify the subsurface models.

3.2.3 Hydraulic properties
Data collected by Borst et al. (2006) resulted in the distinction of two layers; a sediment layer

consisting of clay, silt or sand, overlying weathered rock which is underlain by crystalline
basement (Figure 3.2).

Soil characteristics, porosity, specific yield and hydraulic conductivity are layer specific properties,
which were taken from literature by Borst et al. (2006). To estimate the properties more
accurately, porosity and hydraulic conductivity were determined of silt (eastern riverbank, at

runoff plot 1 and 3), clay (western riverbank, at runoff plot 4), and coarse sand (riverbed).

~riverbank

verbank -
VEroanK ek
weathered rock:
. FEOSOST

riverbed - i E
coarse sand — - drock

1.65m

20.7m

Figure 3.2 Schematic representation of subsurface (after Borst et al. (2006))

Saturated hydraulic conductivity
Two methods were applied to measure saturated hydraulic conductivity in unsaturated soil: the

inverse auger hole method and double ring infiltrometer.
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Inverse auger hole method (or Porchet test)

The inverse auger hole method was applied to determine saturated hydraulic conductivity of the
subsurface. To this aim, a diver data logger (Van Essen Instruments, The Netherlands) with a
preset measuring interval of 2 seconds was placed in the piezometer. The piezometer was filled
with water, which subsequently drains. The velocity with which the water level drops is dependent
of soil properties. To minimize the influence of errors on the result, the test was repeated several

times.
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Figure 3.3 Schematic representation of the inverse auger hole method (Waterloo 2005)

According to Borst et al. (2006), the results of the tests performed during the fieldwork in 2005
were unreliable. However, using the methodology described in Van Beers (1983), it was possible
to determine saturated hydraulic conductivity from their data (Figure 3.3). Saturated hydraulic
conductivity (Ks [cm s‘1] )is calculated using Equation 3.1, where r is the radius of the borehole
[ecm], hg equals the water level at time t; [s] and h; is the water level at time t, [s]. Only the steep

part of the recession curve is taken into account to perform the calculation.

r r
log(h, + —)—log(h, +—

K, =1.15r [3.1]

t

In addition to the measurements conducted by Borst et al. (2006), new tests were preformed in

piezometers 22 and 25.

Double ring infiltrometer

The double ring infiltrometer (VU University Amsterdam, The Netherlands) was used to measure
the saturated hydraulic conductivity of the surface layer. The double ring infiltrometer consists of
an inner and outer stainless steel ring with diameters of 30 and 60 centimeter, which were partly

inserted into the soil. The inner ring was supplied with water through a mariotte bottle to maintain
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a constant water level. Water infiltrating the soil will cause the water level in the inner ring to fall
below the base of the tube, resulting in water flow. The volume of water needed to keep the water
level at constant height per unit of time was recorded. Once steady-state flow is reached (i.e.
dz/dh = 1 in Equation 3.2), the saturated hydraulic conductivity can be calculated from the flux
through the inner ring using Equation 3.3, in which V equals the volume depleted from the

Marriotte bottle [m3], t is the time between readings [s] and A is the surface area of the inner ring

[m?].
Ksz—vﬁ [3.2]
dh
\%
K =— 3.3
= [3.3]

The outer ring eliminates the problem of overestimating the hydraulic conductivity due to non-
vertical, three-dimensional flow by contributing water to lateral flow. To this aim, the water level in

the outer ring was held manually at the same level as the water level in the inner ring (Figure 3.4).

Bottle

Inner ind Outer fng

NOF

vyTYY YY ¥y

Figure 3.4 Schematic cross-section view of the double-ring infiltrometer
installation used in the instruction fieldwork (Waterloo, 2005)

Porosity
Bulk density, porosity and volumetric soil water content were determined in one procedure. Soil

samples were taken using sample cylinders with a volume of 100 cm®. A balance with an
accuracy of 0.1 g was used to determine the weight of the sample and ring, after which the
sample was saturated bottom up. The sample was re-weighted to determine saturated weight (X
[g]). The sample was dried using an oven (24 hrs at 105 °C). The sample was re-weight to
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determine the dry weight of the soil (Y [g]), and of the rings (Z [g]). Porosity (n [-]) was determined
using Equation 3.4.
_X-Z-Y
~ 100

n [3.4]

3.3 Meteorology

3.3.1 Groundwater recharge
The model will simulate the response of groundwater levels on groundwater replenishment, which

is dependent of the potential groundwater recharge and evaporation from subsoil. Potential

groundwater recharge (R ) [m] is determined by precipitation (P) [m] and the fraction of

8w, pot

precipitation infiltrating the subsoil (1— fg ..,) [-], in which fo, ., [] equals the mean

surface runoff (Equation 3.5). The actual groundwater recharge (R [m] is calculated using

gw,act )
the potential groundwater recharge and the evaporation factor (f,) [-], as described by Equation

3.6.

ng,p()t = P * (1 - fSRO,gem ) [3'5]

[3.6]

gw,act = ng,pol /fe

Precipitation
Precipitation is measured on the western water divide of the catchment dam (UTM 38939 m East,

9838422 m North, Figure 3.5). The intensity measured at this location is assumed to be

representative of the whole model area.
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Figure 3.5 Location of equipment during the field visit 2006

Precipitation was measured using two methods, an automated tipping bucket rain gauge system
(VU TBL1) and manual measurements using a totalizer (locally produced). Automated
measurements were conducted during the field visits. The manual measurements are performed

continuously on a daily interval from October 2005 onward.

Infiltration
The fraction of precipitation infiltrating the subsoil was determined using runoff plots, located on

the eastern riverbank (Figure 3.5). The methodology is described by Jansen (2007), who also

discusses the results.

Evaporation
The evaporation factor is used to determine evaporation from the subsoil. To this aim, water

samples were collected of groundwater at the end of the dry season and during the wet season
(p09) in addition to samples of rain and river water. The samples were analyzed using titration on
different ions using the chemical field kit developed at the Faculty of Earth and Life Sciences of
the VU University Amsterdam as described by Beenke et al. (2005). Additionally, samples were
analysed in the hydrochemistry laboratory of the VU University Amsterdam.

Using chloride to determine recharge of the saturated zone is an accepted technique (Mazor et
al., 1992) based on the principle of the chloride mass balance in which chloride is assumed to be
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acting as a conservative tracer. Rainwater contains low concentrations of chloride and
concentrations in groundwater are proportional to the fraction of water evaporated prior to
groundwater recharge. Although Borst et al. (2006) found halite rock (NaCl) in the study area,
rock dissolution, except locally, is not expected to influence water chemistry significantly. The

evaporation factor is calculated using Equation 3.7, in which (Cl,) is the chloride concentration

in precipitation [mmol I'"], and (Cl,,) equals the concentration of chloride in the groundwater
sample [mmol I'"].

f = Ci,,

Cl,

[3.7]
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4 Results of field campaign

This chapter describes results of the fieldwork regarding precipitation, water chemistry, soil
sampling, VESses, hydraulic properties and groundwater level measurements.

4.1 Groundwater
Figure 4.1 until Figure 4.5 show the rise of groundwater in response of precipitation and the

lowering of the groundwater table during the dry season in piezometers placed around the Kwa
Ndunda sand dam (Figure 3.1, Appendix 3). The graphs represent groundwater level fluctuations

in several cross sections upstream and downstream of the sand dam.

Figure 4.1 and Figure 4.2 show groundwater levels at the eastern and western riverbanks
upstream of the Kwa Ndunda sand dam. During the dry season, heads in the riverbed are
constantly higher compared to the banks. Furthermore, groundwater levels measured in
piezometers next to the riverbank (p04 and p07) are constantly higher as compared to levels
measured in piezometers located further from the riverbed (p03 and p02 at the western riverbank
and p07 and p09 at the eastern riverbank). To the contrary, groundwater levels observed in p25
and p26 are constantly higher as compared to piezometers located closer to the riverbed (p02 to
p04 and p07 to p09).
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Figure 4.1 Groundwater levels as measured manually 50 meters upstream of the sand dam in the riverbed
and eastern riverbank
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Figure 4.2 Groundwater levels as measured manually 50 meters upstream of the sand dam in the riverbed
and western riverbank

Figure 4.3 displays groundwater levels measured in piezometers near the sand dam.
Groundwater levels in the riverbed (p06) are consistently higher as compared to p10 and p11.
During the wet season, no measurements are available from piezometer p06. Comparing p10

and p11 with p12 shows a difference in groundwater level of more than one meter on average.
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Figure 4.3 Groundwater levels as measured manually in the riverbed at the sand dam and in the eastern
riverbank

Figure 4.4 and Figure 4.5 show groundwater levels measured in piezometers located on the
eastern and western riverbanks 100 meter downstream of the Kwa Ndunda sand dam.
Groundwater levels in p18 are consistently higher as compared to the riverbed (p17). Piezometer
p21, located further from the riverbed, registers heads higher than p18 (except for a short period
in April 2006, in which the heads were temporarily lower). Heads in the western bank show small
differences; p15 registering slightly higher levels than p14 and p13, respectively. Nevertheless,
heads in all piezometers located in the riverbed are higher as compared to the riverbed, except

during the wet season when the river is flowing.
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Figure 4.4 Groundwater levels as measured manually 100 downstream of the sand dam in the riverbed and
eastern riverbank
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Figure 4.5 Groundwater levels as measured manually 100 meters downstream of the sand dam in the
riverbed and western riverbank
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Figure 4.6 shows the response of groundwater levels upstream of the Kwa Ndunda sand dam on
precipitation and successive dry seasons. Three components can be distinguished. First, the
reaction of groundwater levels to precipitation, also shown in Figure 4.7 in detail. Evidently,
groundwater levels respond rapid to precipitation; groundwater level in the riverbed (p05 and p17)
shows the quickest and largest amplitude of response, followed by piezometers close to the
riverbed (p04 and p15). Amplitude of response decreases and response time increases with
increasing distance from the riverbed.

Secondly, the constant shape of the recession curves during the short dry seasons (e.g. 18-01-
2006 to 01-03-2006) which are dependent of soil type. Sand has a more gradual recession curve
compared to clayey soils on the riverbanks. The last component is observed during the prolonged
dry season (24-05-2006 to 20-10-2006) showing an evident decrease in gradient of the recession
curve when the groundwater levels fall below a certain groundwater level (-0.60 m + spillway for
p05, Figure 4.6).
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Figure 4.6 Reaction of groundwater levels on precipitation as measured in the piezometers in the riverbed
and western riverbank 50 meter upstream of the Kwa Ndunda sand dam
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Figure 4.7 Detail of measured groundwater levels as measured manually 100 meters downstream of the
sand dam in the riverbed and western riverbank in combination with precipitation

4.2 Meteorology

4.2.1 Precipitation
Results of the manual daily precipitation measurements are presented in Figure 4.8. The

occurrence of precipitation is focused in three main wet seasons; 21-11-2005 to 19-11-2005, 08-
04-2006 to 03-05-2006 and 15-10-2006 to the end of the field visit (15-11-2006). Two rainfall
events occurred during the dry period from 19-11-2005 to 08-04-2006; on 20-01-2006 and 29-02-
2006.
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Figure 4.8 Precipitation as measured manually from 15-10-2005 to 15-11-2006 at the western water divide of

the model area g
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4.2.2 Groundwater recharge
Unfortunately, water samples were damaged and lost during transportation. Therefore, results of

the manual titrations performed in Kenya are considered most reliable.

Application of Equation 3.7 results in an average evaporation factor of 114.5 (Table 4.1).

Table 4.1 Average evaporation factor determined using chemical analysis

Water sample | Date CI'[mmol/l] Evaporation factor
Rain 07-11-2006 0.8
p09 07-10-2006 93.2 116.5
p09 24-10-2006 90 112.5
Average 114.5

Jansen (2007) discusses the results from the runoff plots. The average runoff coefficient is 0.15;
85 percent of the precipitation thus infilirates. Combining potential groundwater recharge with the
evaporation factor according to Equation 3.5 leads to an actual groundwater recharge of 0.74
percent of the precipitation on average.

4.3 Subsurface
Based on borehole descriptions, the subsurface is schematized as consisting of clay, silt, sand,

weathered rock and hard rock.

Figure 4.9 and Figure 4.10 show the subsurface upstream and downstream of the Kwa Ndunda
sand dam as reconstructed from borehole data. Depth of the hard rock (e.g. rock which the auger
could not penetrate) and occurrence and thicknesses of sediment and weathered rock layers is

very irregular.
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Geo-electrical measurements are used to determine thickness of the weathered rock layer
beyond the depth that the manual auger could penetrate and to extent spatial coverage of
geological data. Resistivities of the different subsoils are presented in Table 4.2.

Results from Vertical Electrical Soundings indicate a relative small increase in thickness of the
sediment layer from the riverbed further into the riverbanks. The thickness of the weathered rock
layer increases more evident; from a meter near the riverbed to approximately 16 meter towards
the hillcrest. The degree of weathering is highly variable, varying from slightly to highly
weathered. VES results also indicate the presence of groundwater in the weathered rock layer of
the riverbanks.

Table 4.2 Resistivity of different subsoils as interpreted with SchlumBG (VU University, Amsterdam)

Soil type Resistivity (Qm)
Dry 100-170
Silt
Wet 60 — 80
Dry 20-40
Clay
Wet 4-10
Weathered rock 80-180
Basement 200 — >800

The hydraulic properties of the soil layers are discussed in the following sections.

4.3.1 Hydraulic conductivity
Inverse auger hole tests were functional in several piezometers; p06, p10, p13, p17, p20, p21,
p22 and p25. Resulting curves (Figure 4.11) are used to determine saturated hydraulic

conductivity.
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Figure 4.11 Results of inverse auger hole tests in piezometer p06, p10, p13, p17, p20, p21, p22 and p25
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Calculated saturated hydraulic conductivity is presented in Table 4.3, in which IAT means Inverse

Auger hole Test and DR means double ring infiltrometer.

Table 4.3 Saturated hydraulic conductivity (m/d) per sediment type

Sediment Location Method Ksat (m/d)
Silt p10 IAT 11.8
p13 IAT 14.6
RP3 DR 10.1
Clay p22 IAT 1.2
p26 DR 3.2
Sand p6 IAT 35.9
p17 IAT 35.7
Riverbed DR 56.7
Weathered p25 IAT 7.2
rock p21 IAT 11.0
p20 IAT 12.0

Saturated hydraulic conductivity of silty soil varies between 10.1 and 14.6 m/d. Hydraulic
conductivity in clay is measured twice and shows a variation between 1.2 and 3.2 m/d. The
hydraulic conductivity in the riverbed shows a large variation, between 35.7 and 56.7 m/d.

Weathered rock has a hydraulic conductivity varying between 7.2 and 12.0 m/d.

4.3.2 Porosity
Results of different subsoils are displayed in Table 4.4.

Table 4.4 Porosity as determined for coarse sand (riverbed) and silt (RP3)

Location Porosity
Riverbed 0.42
Runoff plot 3 0.34
Runoff plot 3 0.30

Coarse riverbed sand has a porosity of 0.42. Silty soils (Runoff plot 3) have a porosity varying

between 0.34 and 0.30. Porosity in clayey soils and of weathered rock could not be determined.
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5 Discussion of field results

This chapter discusses dynamics in groundwater flow patterns and, from a modelling effort point
of view, the accuracy of input parameters (groundwater recharge, hydrogeology).

5.1 Groundwater
Groundwater flow through the riverbed and a small part of the riverbanks is obstructed through

the presence of the sand storage dam. This results in a groundwater reservoir with raised
piezometric heads. During the dry season, heads measured by piezometers in the riverbed
upstream of the sand dam are higher in comparison to those in the banks. Consequently,
groundwater flows from the riverbed into the riverbanks. However, piezometers located at the
largest distance from the riverbed show the contrary; these continuously register higher
groundwater levels as compared to piezometers located closer to the riverbed. This results in the
conclusion that groundwater flow is oriented towards the riverbed outside the zone of influence of
the sand dam.

In addition to the previous mentioned observations, heads measured in piezometers upstream of
the sand dam are higher than those measured in downstream piezometers are. This indicates
groundwater flow around the sand dam. Downstream of the sand dam, groundwater levels in the
riverbanks are higher as compared to those in the riverbed. Groundwater flow downstream of the

sand dam is thus oriented towards the riverbed.

In response to precipitation, a change in direction of groundwater flow is observed. Due to
groundwater recharge, groundwater levels in the riverbanks decrease towards the riverbed in
both the upstream and downstream cross sections. Groundwater flow is thus oriented towards
the riverbed both up- and downstream of the sand dam. Nevertheless, groundwater is still flowing
around the sand dam.

The aquifer behind the sand dam fills up rapidly in response to precipitation; after one large
rainfall event the sand aquifer in the river is filled and the river starts to flow. The time lag and
decrease in amplitude of the reaction of groundwater on precipitation in the riverbanks is caused
by lower hydraulic conductivity of the soils in the riverbanks compared to the riverbed and the
depth of the groundwater table with respect to the surface level.

It should be noted that the piezometers were installed using hand augering equipment. The ability
to penetrate the weathered rock layer is dependent on the degree of weathering of this layer.
Vertical Electrical Soundings indicate groundwater present in the weathered rock layer, leading to
the conclusion that groundwater levels might drop below the bottom of piezometers during the dry

period.
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Piezometers are concentrated around the sand dam, groundwater levels are thus only known
with acceptable precision in a radius of 50 meter from the sand dam. The addition of piezometers
located further on the riverbanks includes the zone outside the direct influence area of the sand
dam. However, groundwater level data of these piezometers are available over a relative short
period at the moment of publication of this report. The reaction of groundwater levels during the
dry season are not known with certainty. Nevertheless, the piezometers registered groundwater
levels after the long dry period from 03/05/2006 to 15/10/2006, which are evidently higher
compared to levels in piezometers located closely to the riverbed.

5.2 Groundwater recharge
Precipitation is measured manually from 15-10-2005 onwards at the western riverbank. Although

precipitation is measured on a daily interval, and is thus known with acceptable accuracy, the

actual groundwater recharge is subject of discussion.

Firstly, the ratio between precipitation and infiltration, which is obtained from data collected during
the wet season from 15-10-2006 to 20-11-2006 (Jansen, 2007). The ratio varies due to different
land use and soil characteristics. Since the runoff plots were located on different types of land
use, the obtained ratios could be compared. According to Butterworth et al. (1999a), rainfall
intensity is of importance to the percentage of precipitation leading to groundwater recharge.
However, during the field study rainfall events of different intensity and duration occurred
enhancing the precision of the estimation.

After infiltration, soil water evaporates from the unsaturated zone before recharging the
groundwater. An estimation of evaporation is made based on the chloride content of groundwater
water and precipitation samples. Accuracy can be increased by analysis of oxygen isotopes in
precipitation and groundwater samples.

5.3 Hydrogeology
Layer thicknesses of the sediment and weathered rock layers are varying throughout the area.

Boreholes are located in a radius of 100 meter from the sand dam. Especially the thickness of the
weathered rock layer is difficult to estimate because of variation in degree of weathering. Using
VES, the extent of information is increased to a distance of 300 meter at both sides of the
riverbed. Additionally, using VES the thickness of the weathered rock layer could be determined

with more accuracy.
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Hydraulic conductivity is determined in several piezometers, which resulted in consistent data
between the applied methodologies for one layer. Porosity is determined at only two locations
although variation can be large. Uncertainty in the values is large. Furthermore, porosity of the

weathered rock layer could not be determined.
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6 Groundwater model

The groundwater model is designed to study local groundwater dynamics in and around a sand
dam as well as the actual influence on groundwater flow and storage. In addition, the model will
provide insight in physical parameters fundamental for successful functioning of sand dams. The
model effort is performed according to the scheme presented in Figure 6.1, and will be discussed

accordingly.
Conceptual model set-up
Sensitivity analyses
l I"a. o o e gl Ll e ey i S Bk
7~ F drameter optimization
Calibration
l S
Adapt conceptual model Optimal (best) value of parameters
More/better observations l
Remove errors
T Reliability analyses
1!
<no> Model appl_lcatlon
(Scenarios)
!
Conclusions
Modelling study
<yes = completed

Figure 6.1 Scheme of the model effort (after TAIEX, 2007)

This chapter describes the conceptual model. Furthermore, the model specifications, such as
location and dimensions of the model area, spatial discretization, hydrogeological schematization,
initial conditions, time discretization and boundary conditions are discussed. The parameter
values are based on field data and are accounted for in Chapter 4.

6.1 Conceptual model
The conceptual model is based on the results obtained during the field studies in 2005 and 2006

which are discussed in Chapter 5, as well as a literature study on hydrological processes in semi

39




Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

arid catchments. It should be noted that little has been published on groundwater dynamics in

small semi arid catchments.

Precipitation
Groundwater levels measured from October 2005 onward show rapid responses to precipitation.

The same observation was made during a study on catchment hydrology in Romwe (a small
catchment in Tanzania) by Butterworth et al. (1999b), showing rainfall to be the most important
groundwater supplier. Studies of Andersen et al. (1998) and Wheater et al. (2002) on sand rivers
of Botswana showed a single major rainfall event after a long dry period being sufficient to
recharge the alluvial riverbed aquifer completely. As compared to the Kiindu catchment,
significant resource potential remained throughout the dry season, supplying local communities

with water.

Evaporation
The field study indicated a small percentage of the infiltrated precipitation leading to groundwater

recharge. Wheater et al. (2002) shows most of the rainfall is lost through evaporation during soil
moisture studies in semi arid areas in Saudi Arabia and Arizona. However, several studies
indicate evaporation being small once infiltration has taken place and the water table drops below
the surface (Andersen et al., 1998). Parrisopoulos et al. (1991) shows evaporation losses
generally not significantly affecting the water balance or water table responses in short-term
simulations at (sub)catchment scale. According to Wheater et al. (2002), evaporation from the
riverbed is not significant once infiltration has taken place; alluvium underlying wadi bed is
effective in minimizing evaporation loss through capillary rise because of its coarse structure.
Hellwig (1973) found that when the water table drops 60 cm below the surface level, evaporation
losses are insignificant. Biamah et al. (2004) state that high evapotranspiration rates are
experienced in the soil water zone but evapo(trans)piration from the groundwater table in the
riverbanks is expected to be negligible. As described in Paragraph 2.3, little vegetation is present
on the riverbanks during the dry season; natural vegetation is scattered and disrupted by bare
crop fields. Soil water is protected against evaporation through a crust because of higher
reflectance and retardation of capillary movement of water (USDA, 1996). The exception to this
situation is the area next to the riverbed where less drought persistent vegetation exists.

During the wet season, crops are grown on the riverbanks. This vegetation presumably has a
limited root depth, enhanced by the fine textured soils which usually result in a more superficial

root zone development compared to coarser subsoil (WWD, 2000).

Groundwater flow
Groundwater level measurements performed from October 2005 onward in piezometers up- and

downstream of the Kwa Ndunda sand storage dam lead to the following conclusion. Sand storage
dams cause enlargement of the natural aquifer and obstruct groundwater flow through the
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permeable riverbed. A groundwater reservoir is formed upstream of the sand storage dam.
Raised heads in this zone of influence results in groundwater flow from the riverbed into the
riverbanks and through the riverbanks around the dam. Upstream of the sand dam outside the
zone of influence and ddownstream of the dam, groundwater flow is directed towards the
riverbed.

In correspondence with Jothiyangkoon et al. (2001), subsurface runoff is identified as the key
process. Uhlenbrook et al. (2005) describes subsurface groundwater flow in the aquifer situated
in the soil cover above the bedrock as topography driven. Accordingly, groundwater flow in the
Kiindu catchment would be directed towards the riverbed and south, following the general
topography of the region. Therefore, potential groundwater storage of the sand body in the
riverbed should increase downstream since the catchment area and thus groundwater flow
towards the riverbed increases downstream. This corresponds with observations during visits to
downstream parts of the Kiindu river described by Gijsbertsen (2007); river width and depth of the
sand aquifer increase downstream. Also, from communication with local communities it became
clear that in the natural situation groundwater was available for longer periods of time during dry

seasons in more downstream parts of the Kiindu catchment. This assents the hypothesis.

6.2 Model

The model is developed in the Triwaco modeling environment (Royal Haskoning, 2004; Triwaco).

Groundwater flow is computed by finite element simulation in calculation module Flairs. A major
advantage of the finite element method is grid flexibility, allowing a close spatial approximation of
irregular boundaries of the aquifer, internal structures, point sources and parameter zones within
the aquifer (Konikow, 2004; Viaene et al., 1998). This feature is important to enable incorporation
of sand dams and scoop holes in the model.

Flairs solves the partial differential equation for water level h in different aquifers by using the
Galerikin finite element method (Solomatine et al., 1999). Flairs uses an integrated combination
of the preconditioned conjugate gradient (PCG) method complemented with the over relaxation
method (SOR) to ameliorate the solution for changes in head due to source terms and phreatic
calculations (Viaene et al., 1998).

The upper aquifer has phreatic conditions. However, based on numerical considerations, the
aquifer is schematized as confined. The primary reason is the steep gradient of the slope,
resulting in large parts of the aquifers theoretically being dry for most of the model run.
Consequently, the saturated thickness and thus calculated transmissivity of the aquifers are zero.

Groundwater flow is thus not occurring in theory while it does in reality. During the wet season,
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groundwater levels rise rapidly in response to precipitation, leading to an extreme increase in
transmissivity. This results in an almost immediate emptying of the aquifers and thus an
extremely low transmissivity. The rapid changes lead to convergence problems. To avoid this
problem, a constant transmissivity is used which approximates the saturated thickness of the
aquifer multiplied by its hydraulic conductivity. To this aim, the calculations are performed in a
confined setting.

6.3 Model area and boundary conditions
The model area is located between the up- and downstream dams of the Kwa Ndunda sand dam

and between water divides on both sides of the river. Both riverbanks are included in the model
because the eastern riverbank primarily consists of silty soils while the western riverbank is
comprised of clay. This is observed throughout the Kiindu catchment as well as in other
catchments (Gijsbertsen, 2007). The hydraulic properties of the riverbanks differ substantially
(Paragraph 4.3), resulting in significantly dissimilar hydrological behavior (Paragraph 4.1)
supporting the choice to incorporate both riverbanks in the groundwater model.

The model area covers approximately 1.9 km?, and has a length of approximately 1900 meter and

a width of approximately 1950 meter (Figure 6.2).

The largest part of the model boundary is defined at hill ridges and is considered a no flow
boundary. However, in depressed areas around the up- and downstream sand dams,
groundwater flow is expected to occur. A constant head boundary is assigned to these parts of
the boundary (Figure 6.2). The distance of the boundary is large enough to ensure the boundary
condition to have a negligible effect on simulated groundwater levels in the area of attention. The
head is based on observations at the Kwa Ndunda sand dam of approximately 0.5 meter below
surface level on average. To ascertain the boundary conditions don’t influence modeled
groundwater levels in the area of interest, the model is run with heads of +0.3 m, +0.1 m, -0.1 m
and -0.3 m with respect to this boundary condition (Appendix 8).
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Figure 6.2 Model boundary and boundary conditions with surface elevation level contoured (m+ M.S.L.)

6.4 Spatial discretization
Grid resolution determines the detail with which parameters can be represented and thus allots

the detail of model results. However, it also determines calculation time. The balance is found by
creating a dense network in the area of interest (the area around the Kwa Ndunda sand dam) and
decreasing grid density towards the model boundaries. To represent resistance between riverbed
and bank (as will be explained in Paragraph 6.7.2), it is necessary to extent the dense network
along the riverbed upstream of the sand dam. This allows a close spatial approximation of
irregular boundaries between riverbed and —banks.

A rule of thumb states differences between levels of discretization should increase by a factor 3 at
most, thereby preventing irregularities in the model grid. The smallest nodal distance is 1 meter,
increasing to 5, 10, 20 and 40 meter at the model boundary. The model is run in Flairs using a
finite element grid created in grid generator program Tesnet, resulting in the network shown in
Figure 6.3, consisting of

® 36274 nodes;
® 181 boundary nodes;
® 72365 elements
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Kwa Ndunda sand dam

Figure 6.3 Visualization of the used discretization in the groundwater model, with a special focus to the
area around the Kwa Ndunda sand dam

6.4.1 Schematization of ephemeral river
Upstream of the sand dam, the river is schematized as three lines incorporated in the modeling

grid. These lines enable precise allotment of parameters. The pairs of lines are 15 meter apart,
corresponding to the actual width of the Kiindu river. Downstream of the Kwa Nunda sand dam,
the Kiindu river is schematized as two lines being 15 meters apart. Tributaries of the Kiindu river

are simulated as single lines (Figure 6.4).
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Figure 6.4 Representation of the Kiindu river and Kwa Ndunda sand dam

6.4.2 Schematization of the storage dam
Flairs determines transmissivity as a mathematical average of the values of transmissivity at the

nodes of an element (Viaene et al., 1998). A barrier, e.g. a sand dam, should thus be presented

as a narrow zone of nodes with a very low conductivity; the sand dam is incorporated as three
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lines with a polygon with very low conductivity (0.00001 m/d) around the inner line. The resistivity
between riverbed and banks is incorporated likewise, having a hydraulic conductivity of 0.1 m/d.

6.5 Hydrogeological schematization

6.5.1 Surface elevation
Surface elevation is defined by a SRTM 90 m DEM with a horizontal resolution of 90 meters and

a vertical resolution of 5 meter available through the CGIAR Consortium for Spatial Information
(CIS). The SRTM 90 m DEM covers half of Kenya. The image was cropped to fit the
topographical map of the field area (Figure 6.5). Also, the coordinate system was converted from
UTM WGS84 74S in decimal degrees to UTM WGS84 in meters.

Figure 6.5 Arial coverage of the SRTM 90 m DEM focussing on the catchment of the Kiindu river

6.5.2 Model layers
The model consists of 2 aquifers; sediment and weathered rock on top of impervious basement

(Figure 6.6). At the location of the river, the sediment layer consists of coarse sand. On the
riverbanks the sediment consists of clay on the western riverbank and silt on the eastern

riverbank. The weathered rock layer is present throughout the model area.
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Figure 6.6 Schematic representation of the subsurface (after Borst et al. (2006))

6.6 Temporal discretization
The simulated period is from 15-10-2006 to 15-11-2006, starting at the end of a dry period and

including several wet and dry seasons. The model runs on a five day interval. Data regarding

precipitation and groundwater levels are available from October 15" 2005.

6.6.1 Initial condition
A semi arid system is very dynamic, consisting of wet and dry seasons. Since the measurements

of groundwater level and precipitation started at the end of the dry season (15-10-2005), the initial
conditions is representative of the situation at the end of a dry period. To this aim and to account
for irregularities due to model instabilities in the initial period, a year in advance of the
groundwater simulation is added to the model run. The model run thus starts at 15-10-2004.
Figure 6.7 shows that one year in advance of the actual model run is sufficient to obtain a stable
initial condition; elevated groundwater levels due to recharge in the first time step decrease to a
constant groundwater level within ten time steps, after which the drop of groundwater level is

almost negligible.
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Figure 6.7 Representative drawdown curve during the first year after a large recharge event

6.7 Upper boundary conditions

6.7.1 Groundwater recharge
Groundwater recharge is a time dependent parameter assumed to be uniform throughout the

model area although varying in intensity and duration. As argued in Paragraph 5.1, ‘Conceptual
model’, evaporation can be assumed to be negligible after groundwater recharge. However,
evaporation from the soil prior to groundwater recharge can be extensive. Although subsoil
evaporation is not incorporated in the model, it is accounted for indirectly through the evaporation
factor.

6.7.2 River floods
River stages are modelled using a controlled water level; if the controlled water level rises above

the base elevation of the primary drainage system, the system is active and drainage will occur.
These moments correspond to the actual occurrence of river discharge derived from the
groundwater level measurements. The height of river stages is based on the experiences of the

local community and field observations.

6.7.3 Groundwater abstraction from the riverbed
Groundwater is abstracted from the riverbed using scoop holes (Paragraph 2.6.2). Manual

abstraction of groundwater is not incorporated in the initial model since the aim of the calibrated
model is studying the effect of the presence of a sand dam on groundwater flow. Groundwater
abstraction would result in undesirable influences on groundwater flow. However, a well is
incorporated in model scenario 4 (Paragraph 9.4) to study the effect of groundwater abstraction

on groundwater flow and storage during dry seasons.
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7 Calibration

This chapter deals with the calibration of the model describing model sensitivity, optimal values of
model parameters leading to the best fit with measured groundwater levels (e.g. the calibrated

model), model results regarding groundwater flow and storage and model reliability.

7.1 Sensitivity analysis
To determine the influence of parameters on groundwater levels (timing and amplitude of peaks

in head and gradients of recession curves) and the relative importance of parameters, a
sensitivity analysis is performed. To this aim, several simulations are performed with parameter

values based on field values using multiplication factors of 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5.

7.1.1 Resulis
Results of the sensitivity analysis are described and illustrated per parameter (e.g. hydraulic

conductivity and thickness of both aquifers, thickness of the sand layer in the riverbed,

groundwater recharge, and flood depth) in Appendix 6. This paragraph gives a summary.

Model results are most sensitive to thickness and hydraulic conductivity of the sediment layer on
the riverbanks. These parameters influence the reaction of groundwater levels on precipitation as
well as the gradient of simulated drawdown curves. Decreasing these parameter values
influences the model result most pronounced, leading to higher peak groundwater levels and
smaller gradients of recession curves.

Hydraulic conductivity and thickness of the weathered rock layer influence model results to a
lesser extent as compared to varying these properties of the sediment layer. Decreasing these
parameters mainly results in a smaller gradient of simulated drawdown curves.

Varying thickness of the sand layer in the riverbed has a large influence on calculated
groundwater levels in the riverbed. Decreasing the thickness influences groundwater levels most
pronounced, resulting in lower peak groundwater levels.

Model results are relatively insensitive to changes in groundwater recharge of less than 20
percent. However, a decrease of 50 percent causes instable model results while doubling
groundwater recharge leads to significant elevation of groundwater levels in the riverbanks.
Increasing flood depth influences calculated groundwater levels negligible. However, decreasing

flood depth with more than 20 percent leads to lower groundwater levels in the riverbed.

7.2 Parameters of the calibrated model
Based on the sensitivity analysis, calibration of the groundwater model is primarily focused on

layer thickness and hydraulic properties of the sediment layer, as well as thickness of the sand
layer in the riverbed. However, also layer thickness and hydraulic properties of the weathered
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rock layer and groundwater recharge are regarded important to the calibration. Flood depth has
least effect on model results and is thus only used to fine tune model results with measured
groundwater levels. Simulated groundwater levels fit measured groundwater levels best using

parameter input as described below.

7.2.1 Layer thickness
Thickness of the sediment layer is known through augerings and VESses within approximately

300 meter from the riverbed at both riverbanks within 100 meter up- and downstream of the Kwa
Ndunda sand dam (Paragraph 4.3). In addition, layer thicknesses are irregular. Because of this,

layer thickness is subject to parameter optimalisation.

Model results fit observed groundwater levels best when the thickness of the sediment layer
increases from 1.6 meter at the riverbed to 4 meter on the eastern riverbank and from 1.5 meter
to 5 meter on the western riverbank. At the location of the riverbed, the sediment layer consists of
coarse sand. Thickness of the sand layer is largest directly upstream of the sand dam (1.6 m),
decreasing to 10 centimeter at the location of the upstream sand dam. The same schematization

is used for the sand layer at the location of the river downstream of the Kwa Ndunda sand dam.

Borehole data indicate weathered rock not being present in the riverbed. However, to guarantee
continuality of the layer while ensuring an accurate physical representation of the subsurface, the
weathered rock layer is present in the schematization, decreasing to 0.1 meter at the location of
the riverbed. The weathered rock layer reaches a maximal thickness of 15 meter at the eastern
and western catchment boundaries (Figure 7.1).

Underneath the weathered rock, basement is present. Groundwater flow is regarded negligible in
the basement (Paragraph 2.6).
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Figure 7.1 Schematized subsurface in Triwaco
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7.2.2 Layer properties

Hydraulic properties leading to the best model result are presented in Table 7.1.

Table 7.1 Hydrogeological parameters leading to the optimal model result

Storage coefficient

Soil type Ksat (m/d)
(Andersen et al., 2002)
Silt 10 1x10°
Clay 1x10°
Weathered rock 1x10°
Sand 60 5x10™*

7.2.3 Groundwater recharge
Although groundwater recharge is determined to be 0.74 percent (Section 4.2.2), optimal fit

between simulated and measured groundwater levels is achieved when 2 percent of the

precipitation leads to groundwater recharge, which is regarded acceptable. The occurrence,

intensity and length of groundwater recharge is shown in Figure 7.2.
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Figure 7.2 Occurrence, intensity and duration of groundwater recharge forming the input to the Triwaco model

7.2.4 Flood depth

From the sensitivity analysis flood depth is concluded to have a minimal influence on groundwater

levels. However, input leading to the optimal result is shown in Figure 7.3.
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7.3 Calibration results

7.3.1 Groundwater levels
The calibrated model aimed at reconstructing manual measurements of groundwater levels.

Assessment of the fit with the measurements is performed by approaching the features
describing the groundwater graphs, such as shapes of recession curves, moments of raised
groundwater levels and relative height of groundwater levels (determining the direction of
groundwater flow).

Figure 7.4 to Figure 7.8 represent simulated and actual groundwater levels per piezometer
(Figure 3.1, Appendix 3). Figure 7.9 to Figure 7.11 visualize the accuracy with which the model
reproduces measured groundwater levels through the distribution of differences between
simulated and measured groundwater levels. A differentiation is made between simulations
during dry seasons (light gray) and during wet seasons (black). A positive deviation represents an
underestimation by the model. It should be noted that the manual measurements did not result in

continuous records.

Deviation analysis shows model results primarily being in a range of 0.10 meter in all
piezometers. Exceptions are generally due to a less accurate approximation of peak events or
overestimation of groundwater levels during the dry period from 03-05-2006 to 15-10-2006. The
last mentioned imperfection is observed in piezometer p04, p05, p09 to p11, p13 to p15 and p17
(Figure 7.4 and Figure 7.5). Although the angle of recession curves determined by the model

corresponds to actual drawdown curves, the model reaches a more or less stable groundwater
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level while the actual groundwater level continues to drop. However, the gradient of the actual

recession curves also decrease while groundwater declines (p05, p09 and p13 to p15).

The model underestimates groundwater levels as well as the angle of the recession curves in
p05. Piezometer p06, also located in the riverbed upstream of the Kwa Ndunda sand dam,
underestimates peak groundwater levels as well. However, the angle of the recession curves
corresponds quite accurately with manual measurements. The major part of the groundwater

simulation has a deviation of 0.10 meter.

Groundwater levels in the eastern riverbank upstream of the sand dam (p07 and p08) are
underestimated on average. However, angles of recession curves are approximated well and the
simulation is generally accurate within 0.10 meter. Fluctuations in groundwater levels observed in
piezometer p09 differ from nearby piezometers; reaction of groundwater levels to precipitation is
less rapid and pronounced. The model overestimates heads in several cases. The gradient of
drawdown curves is however reasonably matched. During the dry season from 03-05-2006 to 15-
10-2006, groundwater levels are underestimated.

Peaks in groundwater level during the wet seasons of 18-01-2006 and 27-02-2006 are
overestimated in piezometer p10 and p11. Because simulated recession curves have a smaller
angle, the overestimation increases as the dry season proceeds. However, groundwater levels
are generally approached within 0.10 meter, except for the period between 03-05-2006 and 15-
10-2006 in which simulated groundwater levels reach a more or less stationary level while actual
heads continue to decline (Figure 7.5). From both Figure 7.5 and Figure 7.10 it is evident that the
model overestimates groundwater levels in piezometer p12 with 0.75 meter on average.
Groundwater levels in piezometer p13 and p14 are overestimated. However, shapes of recession
curves and moments of raised groundwater levels are represented reasonably well (Figure 7.6).
Simulation of heads in piezometer p15 resulted in a more accurate result; the major part of the
deviation lies within 10 centimeter, except for the last part of the recession period between 03-05-
2006 to 15-10-2006.

Piezometer p17, located in the riverbed, shows an accurate simulation of the measured heads;
the maximum deviation is less than 20 centimeter and is primarily caused by the recession during
the long dry period. Replication of heads in piezometers located on the eastern riverbank
(piezometer p18 and p21) show a small deviation from actual groundwater levels.

Piezometer p25 and p26 are located upstream of the sand dam furthest from the riverbed on
respectively the eastern and western riverbanks. At these locations, a relative short period of data
is available. However, simulations reach the groundwater stage fairly well although the zone in
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which these piezometers are located respond different from those located near the riverbed

(Paragraph 5.1).
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Figure 7.4 Measured and calculated groundwater levels using the calibrated model in piezometer p01 to p06
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Figure 7.5 Measured and calculated groundwater levels using the calibrated model in piezometer p07 to p12
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Figure 7.6 Measured and calculated groundwater levels using the calibrated model in piezometer p13 to p18
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Figure 7.7 Measured and calculated groundwater levels using the calibrated model in piezometer p19 to p24
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Figure 7.8 Measured and calculated groundwater levels using the calibrated model in piezometer p25 and p26
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Figure 7.9 Difference in groundwater levels calculated by the model and measured in p02 to p07
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Figure 7.10 Difference in groundwater levels calculated by the model and measured in p08 to p13
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Figure 7.11 Difference in groundwater levels calculated by the model and and measured in p14 to p21
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7.3.2 Groundwater storage
To determine the volume of groundwater available for abstraction and to resolve the loss of

groundwater from the sand aquifer in the riverbed by flow around the sand dam, a water balance
study is performed on the riverbed upstream of the sand dam in the area of influence. However,
after careful study of the fluxes, it had to be concluded that the program used to perform the
water balance calculation could not determine horizontal fluxes over the boundaries with sufficient
accuracy. This is a known problem, which normally results in small errors. Due to the large
horizontal fluxes in this area, running the water balance program leads to large inconsistencies.

Solving this problem is beyond the scope of this research.

However, groundwater storage in the riverbed is determined for two polygons upstream of the
Kwa Ndunda sand dam (Figure 7.12). In polygon 1, directly upstream of the sand dam, the
thickness of the sand layer is largest, decreasing from 1.60 meter directly upstream of the sand
dam to 1 meter at the upstream end of the polygon. The sand layer in polygon thus has an
average thickness of 1.22 meter. The size of the polygon is 2620 m?. Since the porosity of the
sand is 0.42, the maximum groundwater storage is 1340 m°. The riverbed in polygon 2 has an
average thickness of 0.73 meter, decreasing from 1 meter to 0.50 meter at the upstream
boundary. The surface of Polygon 2 equals 2860 m?, leading to a maximum groundwater storage
of 876 m°.
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Figure 7.12 Location of polygons in the riverbed
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During the wet season, water levels are above the surface level. At these moments, maximum
storage is reached, which is thus 1340 m® in Polygon 1, and 876 m® in Polygon 2. The minimum
calculated groundwater storage in polygon 1 equals 1280 m?®, reached during the prolonged dry

season from 03-05-2006 until 15-10-2006. The stable volume in Polygon 2 is approximately 380
3
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Figure 7.13 Fluctuation in storage of groundwater in the polygons located in riverbed upstream of the Kwa
Ndunda sand dam

7.4 Reliability analysis
Field data forms the basis of the groundwater model. However, not all parameters are known with

certainty while others needed extrapolation to cover the whole model area. To assess the
reliability of the model, the impacts of a certain change in value of a parameter is quantified. To
this aim, parameters under consideration (e.g. hydraulic conductivity and thickness of both
aquifers, thickness of the sand layer in the riverbed, groundwater recharge, and flood depth) are
varied from the calibrated values using multiplication factors of 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5.
Differences in calculated groundwater levels between the calibrated model and scenarios are
quantified for piezometers p02, p08, p06, p14, p17 and p19 (Figure 3.1, Appendix 3). A positive
difference means elevation of groundwater levels in comparison to the calibrated model. Also,
influence on groundwater storage and availability in the riverbed in two polygons upstream of the

sand dam is analyzed (Figure 7.12).
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The results of the reliability analysis are discussed and illustrated per calibration parameter in
Appendix 7. Combining the summary of the reliability analysis with the discussion on the

accuracy of field results (Chapter 5) leads to the following conclusions.

Simulated groundwater levels, especially in the riverbed, as well as groundwater storage are
primarily influenced by the thickness of the sand layer in the riverbed. An increase in thickness of
the riverbed leads to higher groundwater levels and an increase in groundwater storage. The
effect on calculated heads in the riverbed of increasing the thickness is larger than of decreasing
with the same factor.

Within 100 meter upstream of the sand dam, the thickness of the sand layer is known with
satisfactory precision through borehole data. Change in thickness of the sand layer in the river
towards the dam upstream of the Kwa Ndunda sand dam is estimated based on field
experiences. Since the riverbed aquifer is largest directly upstream of the sand dam and will thus
influence groundwater storage to the largest extent, the data is considered satisfactionary
accurate.

Thickness of the sediment layer on the riverbanks influences groundwater levels in the riverbed
more than in the banks. Variation of this parameter with 20 percent leads to a significant change
in head. Additionally, from the reliability analysis it is concluded that increasing the parameter with
50 percent leads to an instable model result. Decreasing by the same factor leads to a significant
increase in groundwater storage; average groundwater storage leads to an increase in
groundwater storage in the riverbed of approximately 20 percent.

Thickness of the weathered rock layer influences model results less pronounced. Although
groundwater levels are influenced by changes of less than 20 percent, variation is within 10
centimeter on the riverbanks. Heads computed in the riverbed are somewhat more sensitive to
variation of this parameter. However, changes of as much as 50 percent lead to a change in
average riverbed storage of only 10 percent.

In a zone of approximately 300 meter from the riverbed, the thicknesses of these layers are
known with acceptable certainty. Trends in layer thicknesses are used to extrapolate towards the
catchment boundary. However, layer thicknesses can fluctuate significantly. Although model
results will primarily be influenced by layer thicknesses in the zone close to the sand dam, model
accuracy can be improved by conducting additional VES measurements further towards the
catchment boundaries.

Hydraulic conductivity of the sediment layer influence calculated heads in the riverbed more

compared to the riverbanks. Small variations (equal to or less than 20 percent) have however
little effect on groundwater levels. Changing hydraulic conductivity of the sediment layer with 50
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percent leads to instabilities of the model (when increasing the Kgg), and influences the reaction
of groundwater levels on precipitation as well as lowering the gradient of simulated drawdown
curves. Additionally, the volume of water stored in the riverbed increases with 20 percent.
Hydraulic conductivity is determined through the inverse auger hole test at the locations of the
piezometers (Figure 3.1, Appendix 3). Values resulting form this method are a volumetric
integrated result of the hydraulic properties of the soil layer in which the piezometer is located
(Waterloo, 2005). The results are regarded sufficiently accurate.

The properties of the weathered rock are known with less certainty because the degree of
weathering varies throughout the catchment, as can be concluded from the VES data. Saturated
hydraulic conductivity is to a large extent dependent on the degree of weathering. However, from
the sensitivity analysis, it became clear that variation of this property has little effect on model
results as compared to the sediment layer.

Model results seem relatively insensitive to changes in groundwater recharge of less than or
equal to 20 percent. Decreasing groundwater recharge with 50 percent causes instabilities in
model results, while increasing with the same value leads to significant elevations of groundwater
levels and storage in the riverbed.

Although precipitation is known with satisfactionary accuracy for the timescale at which the model
is running, and spatial coverage of the model area is of such limited extent that the assumption of
uniform precipitation seems legitimate, this parameter is known with lowest accuracy. Variation in
the ratio between infiltration and surface runoff throughout the model area due to differences in
land use (Jansen, 2007) and soil characteristics are the cause. Due to the fact ratios of runoff
plots with different land uses, an average can be used, decreasing inaccuracies. Furthermore,
because rainfall events of varying intensity and duration are encountered during the field visit,
these are averaged as well, further increasing reliability.

However, another uncertainty is the fraction of water evaporating from the unsaturated zone
before recharging the groundwater. Although a reasonably accurate estimation of the evaporation
factor is made based on the chloride content of the water samples, reliability can be increased by

determining the fractions of oxygen isotopes in several samples.
Flood depth only significantly influences groundwater levels and storage when decreasing it with

more than 20 percent. However, values are based on field experiences and are not expected to
differ with as much as 20 percent.
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8 Discussion of model results

This chapter discusses model accuracy and results of the calibrated model, focusing on
groundwater flow and storage.

8.1 Calibrated model
This paragraph discusses the results following from the application of the calibrated model

regarding groundwater flow and storage in the riverbed.

8.1.1 Groundwater flow
Figure 8.1 shows groundwater flow directions at typical moments during a dry and wet season as

calculated by the groundwater model. To visualize quick groundwater dynamics, a simulation of
the calibrated model is added in Appendix 9.

During the dry season, groundwater flow is oriented predominantly south and towards the
riverbed. Due to the presence of the Kwa Ndunda sand dam, the preferent path of groundwater
flow through the permeable riverbed is obstructed, creating a subsurface water basin. From the
shape of contour lines in the zone upstream of the sand dam, heads are evidently raised,
resulting in groundwater flow from the riverbed into the riverbanks. Upstream of this zone of
influence, groundwater flow is still oriented towards the riverbed in the riverbanks and
downstream through the riverbed. Groundwater is flowing through the riverbanks around the sand
dam. Downstream of the sand dam, contour lines curve towards the riverbed, indicating
groundwater flow from the riverbanks towards the riverbed.

At the start of the wet season, orientation of contours changes direction abruptly in response to
groundwater recharge. Groundwater flow is directed predominantly towards the river throughout
the model area. After the wet season, contour lines in the area upstream of the sand dam change
orientation in one time step and groundwater flow is oriented from the riverbed towards the
riverbanks again in a zone upstream of the sand dam. Considering groundwater level dynamics
through the simulation in Appendix 8, head differences between riverbed and banks are evidently
leveling out during the dry season. The zone of influence of the sand dam is largest at the end of

the dry season, stretching approximately 350 meter upstream of the sand dam.
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8.1.2 Groundwater storage
Groundwater storage is directly linked to groundwater levels in the riverbed and thus shows the

same fluctuations. The volume of groundwater storage in the riverbed increases in direct
response to precipitation to the maximum volume of the polygon, after which the river starts
flowing. During the dry season, groundwater levels decline in response to groundwater flow from
the riverbed into the riverbanks within the zone of influence of the sand dam (Paragraph 8.1.1)
and flow of groundwater downstream through the riverbed (in Polygon 2). Groundwater in the
riverbed is continuously replenished by groundwater flow from the riverbanks into the riverbed
and by groundwater flow through the riverbed upstream of the zone of influence.

Groundwater levels in Polygon 1 are decreasing faster as compared to Polygon 2, caused by
groundwater flow from the riverbed into the banks in Polygon 1, which is larger than
replenishment by groundwater flow through the riverbed. However, as the dry season proceeds,
groundwater levels level out, resulting in a balance between in- and outflow. During the prolonged
dry season (from 03-05-2006 to 15-10-2006) groundwater levels thus reach a continuous level
and storage in the riverbed reaches a constant volume.
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9 Application of the model

Using the calibrated model, four scenario calculations are performed to determine the influence
the sand dam (scenario without a sand dam) and of measures to optimize the effect of a sand
dam, such as increasing infiltration in the riverbanks and increasing the height of the sand dam
itself. Also, the effect of groundwater abstraction from the riverbed is studied, also focusing on the
effect of variation of abstraction rates. The effect on groundwater levels is quantified through
differences in calculated groundwater levels between the calibrated model and the scenarios for
piezometers p02, p08, p06, p14, p17 and p19. A positive difference means an increase in head at
a certain moment in time due to the scenario. Furthermore, the influence on groundwater storage

in the riverbed is analysed for the polygons shown in Figure 7.12.

9.1 Scenario 1 — Removal of the Kwa Ndunda sand dam

9.1.1 Description
To determine the effect of the Kwa Ndunda sand dam on groundwater levels, a scenario without

a sand dam is run. To this aim, the low conductivity zone at the location of the sand dam is
removed and the thickness of the sand layer in the riverbed is decreased. The effect of removal
on thickness of the sand layer is most evident directly upstream of the sand dam since it will have
a more uniform thickness. In the calibrated model, the presence of the sand dam influences layer
thickness to a distance of approximately 350 meter upstream of the dam. Removal of the sand
dam leads to a decrease from 1.6 meter to 0.25 meter directly upstream of the sand dam, from 1
meter to 0.20 meter 150 meter upstream of the dam and from 0.5 to 0.20 meter at the edge of the
former influence area (Figure 9.1). The sand layer directly downstream of the sand dam will
encounter a slight increase in thickness since sand is no longer flushed away by water flowing
over dam crest. At this location, an increase from 0.05 meter to 0.25 meter is experienced,

matching the thickness of the sand layer directly upstream of the former sand dam.

71



Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

Y39 /5U

=Zz—>

9839500

9839250

9839000

9836750

\

9838500
Difference in surface elevation (m)

9338250-] 0.16-0.24

TRy
FETRRERL

9838000

I

[P
{ETS

T T T T T T
387500 383000 338500 389000 389500 390000

Figure 9.1 Effect on surface elevation (and thus thickness of the sand layer in the riverbed) resulting from the removal
of the Kwa Ndunda sand dam

9.1.2 Model results

Figure 9.2, Figure 9.3 and Figure 9.4 show the impacts of removal of the Kwa Ndunda sand dam.
Figure 9.3 represents calculated heads at representative moments during dry and wet seasons.
The main difference between groundwater levels calculated by this scenario as compared to
those computed by the calibrated model occurs during the dry season. As in the calibrated model,
groundwater flow is mainly directed south and towards the riverbed. However, in contradiction to
the calibrated model, groundwater flow is oriented uniformly throughout the model area. During
the wet season, groundwater levels react similar to the calibrated model.

Differences in calculated groundwater level are largest in the zone direct upstream of the sand
dam (

Figure 9.2a, Figure 9.4). Groundwater levels are lower almost throughout the model area.
Upstream of the former sand dam average difference in calculated groundwater levels varies
between 0.40 and 0.50 meter in the riverbed (p06). Groundwater levels in the riverbanks show a
larger drop in head; between 0.60 and 0.70 meter as compared to the original situation (

Figure 9.2a).

Figure 9.2b shows changes in groundwater storage in the riverbed. The presence of the sand
dam increases groundwater availability with approximately 300 percent on average. During the
dry season from 03-5-2006 to 15-10-2006, storage in the riverbed as calculated in the scenario
would have decreased to negligible volumes within two months. This conclusion is in
correspondence with the actual recession of groundwater levels during the dry season.

Groundwater levels calculated by the calibrated model are still 0.5 meter above the bottom of the
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piezometers in the riverbed at the end of the prolonged dry season (Figure 4.2). However, an
extra drop in head of 0.5 meter on average and up to 0.79 meter will lead to a situation in which
heads are decreased beyond abstractable levels (e.g. in the weathered rock) at a certain moment
in the dry season. The riverbed would thus have dried up within 1.5 months, around the being of
July. Normally, the next wet season begins half of October, meaning a period of drought for 3.5
months until the next rain season while in the original situation the riverbed would still contain
approximately 580 m> groundwater, enough to bridge the period of drought until the next rain

season.
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Figure 9.2 Difference between the calculated groundwater levels and storage in the riverbed as a consequence of

scenario 1

9.1.3 Discussion
In absence of a sand storage dam, groundwater levels are lower almost throughout the model

area because groundwater flow through the riverbed (and part of the banks) is not obstructed by
the presence of a sand dam as it was in the calibrated model. Consequently, no groundwater
reservoir is created and groundwater flow is oriented from the banks towards the riverbed

throughout the model area.

The positive influence of the presence of a sand storage dam on the volume and period of
groundwater availability is evident when comparing the results of the scenario calculation to those
of the calibrated model. A sand dam increases the thickness of the sand layer in the riverbed
(e.g. larger storage capacity) and obstructs groundwater flow through the riverbed, resulting in
prolonged groundwater availability throughout dry seasons and larger volumes of groundwater
present in the riverbed. In absence of the sand dam, groundwater would only be present in the
riverbed during the first 1.5 months of the dry season, while in a situation with sand dam the
riverbed would still contain enough groundwater to bridge the period of drought until the next rain

season.
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Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

9.2 Scenario 2 - Increasing groundwater recharge

9.2.1 Description
Because approximately 90% of expected annual rainfall occurs during the two rain seasons, it is

imperative that as much rainwater as possible should be conserved (Biamah et al., 1999). Jansen
(2007) analysed precipitation — infiltration ratios. Runoff plots on identical soil types and slope but
with different land use (natural vs. agricultural) result in remarkably different runoff percentages;
natural land use results in consistently higher surface runoff percentages as compared to the
agricultural plot, up to 50 percent. The main cause is crust formation of bare soil, resulting in a
barrier to infiltration of rainwater. In agreement with Schechambo et al. (1999), increasing
groundwater recharge is concluded to be primarily dependent on enlarging infiltration of
precipitation and minimizing runoff. The objective is to prevent surface flow of excess rainwater
and prolong time available for infiltration. It is suspected that the percentage of precipitation
infiltrating the soil can be improved with as much as 70 percent when the soil is subjected to
cultivation and land husbandry measures such as regenerating natural vegetation, ploughing,
bench terracing and contour bunds and retention ditches (Biamah et al., 1999). These measures
also limit erosion and nutrient loss, which can be severe in sloping semi arid catchments
(Rockstrom, 2000).

The groundwater recharge used to run ‘Scenario 2 — Increasing the infiltration rate of the
riverbanks’ is shown in Figure 9.5. In this scenario, groundwater recharge is expected to increase
with 50 percent.
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Figure 9.5 Groundwater recharge to the Triwaco model when running ‘Scenario 2 — Increasing the
infiltration rate of the riverbanks’
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9.2.2 Model results
Figure 9.6, Figure 9.7 and Figure 9.8 show the effect of increased riverbank infiltration on

groundwater levels and storage. Figure 9.7 represents calculated heads during representative dry
and wet seasons. Comparable to groundwater flow calculated by the calibrated model,
groundwater flow is directed south and towards the riverbed during the dry season. Analogue to
the calibrated model, the Kwa Ndunda sand dam obstructs groundwater flow through the river,
resulting in a subsurface reservoir behind the sand dam. The elevated heads initiate flow around
the sand dam. Downstream of the sand dam, groundwater flow in the banks is oriented towards
the riverbed.

At the start of the wet season, direction of groundwater flow changes in immediate response to
groundwater recharge and is oriented mainly towards the river. Groundwater flow is redirected
south and flow velocity decreases as the dry season proceeds. Groundwater level contours show
leveling out of head differences between riverbed and banks.

Largest differences in calculated groundwater level between the calibrated model and the
scenario occur in the riverbanks during the wet season; groundwater levels increase with 3.75
meter in the northwestern corner of the model area during the dry season. The average head
difference during the wet season is 0.50 meter and 0.30 meter in the dry season. During the wet
season, the largest gradient in head difference is experienced almost perpendicular to the
riverbed; a minimal effect on calculated groundwater levels occurs in the riverbed due to the fact
that these are almost continuously at surface level already (e.g. the river is flowing).
Nevertheless, groundwater levels in the riverbed (p06) have increased with 0.20 meter at the end

of the dry season, which is the crucial period.

The effect on groundwater storage is most prominent during the dry season (Figure 9.6b).
Groundwater levels in the river upstream of the sand dam increase more than downstream,

leading to an increase in groundwater flow around the sand dam.
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Figure 9.6 Difference between the calculated groundwater levels and storage in the riverbed as a result of increasing
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9.2.3 Discussion
Functionality of sand dams is for an important part explained by replenishment of the riverbed

aquifer by groundwater flow from the riverbanks towards the bed. Only a small percentage of
precipitation actually leads to groundwater recharge. This can be increased significantly by
performing land husbandry measures, such as terracing and ploughing of bare soil and
agricultural plots (Schechambo, 1999).

Impact of increased groundwater recharge is largest farest from the riverbed, resulting in a larger
gradient in head. The effect is an increased groundwater flow velocity from the banks towards the
riverbed, leading to an increase in total volume of water supplied from the banks to the riverbed.

This is in agreement with calculated storage of groundwater in the polygons in the riverbed.

In correspondence with Rama Mohan Rao (1996), increased groundwater recharge in the
riverbanks is thus concluded to result in a larger volume and prolonged period of groundwater
availability. The effect of increased groundwater recharge on groundwater storage is most evident
in the area upstream of the sand dam during dry seasons, which could be fundamental in years of
drought.
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Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

9.3 Scenario 3 — Increasing the height of the sand dam

9.3.1 Description
The effect of increasing the height of the Kwa Ndunda sand dam on groundwater flow is studied

in this scenario. The height of the original dam is 1.60 meter. In this scenario, dam height
increases to 3.00 meter and the width increases from 18 meter to 60 meter, which is dependent
on the slope of the riverbanks (Figure 9.9 and Figure 9.10). It is assumed that the extra volume of
sand sedimented behind the higher dam has the same hydraulic properties as the sand already
present in the riverbed (hydraulic conductivity = 60 m/d). Spatial coverage and variation in
thickness of the extra sand layer is shown in Figure 9.9. The scenario also results in a new
surface elevation model.

The extra sand is integrated in the sediment layer (aquifer 1). To compromise for the fact that the
riverbanks actually consist of two layers with quite distinct hydraulic properties, an integrated
value for hydraulic conductivity is assigned at these locations; the eastern riverbank is given a
value of 35 m/d and the western riverbank a value of 15 m/d.
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9.3.2 Model results
Figure 9.11, Figure 9.12, Figure 9.13 and Figure 9.14 show the effect of increasing the height of

the Kwa Ndunda sand dam on model results. As compared to the calibrated model, groundwater
flow is directed south and towards the riverbed during the dry season and groundwater flow is
oriented around the sand dam. Downstream of the sand dam, orientation of the contour lines
change to more parallel to the riverbed, indicating flow towards the river. At the end of the long
dry season, the zone stretches 400 meter upstream of the sand dam.

At the start of the wet season, groundwater flow direction changes in immediate response of
groundwater recharge on the riverbanks and is oriented mainly towards the river. Like during the
dry season, groundwater flow is directed around the sand dam. Downstream of the sand dam
groundwater contours are closely spaced. Head differences between riverbed and banks level out
during the dry season, resulting in a larger zone of influence. The direction of groundwater flow is
redirected to the south and flow velocity decreases while the dry season proceeds.

Figure 9.14 shows differences in head calculated by the calibrated model and scenario 3. During
the long dry period (07-06-2006), the zone in which heads are elevated with 0.10 meter stretches
approximately 300 meter upstream of the sand dam. Within 130 meter upstream of the sand dam,
groundwater levels are elevated 0.24 to 0.36 meter. Figure 9.11 visualizes groundwater levels
calculated by the calibrated model and the scenario in the riverbed upstream of Kwa Ndunda
sand dam as an illustration of fluctuations in time. Responses of head calculated by the scenario
are less pronounced than those computed by the calibrated model. This leads to lower
groundwater levels during the wet seasons and the first part of the dry season. However,
groundwater levels decline slower resulting in elevated groundwater levels from certain moments
during the dry season. As the model runs, deviations between calibrated model and scenario
become smaller during the wet seasons (negative) and increase during the dry seasons
(positive). In general, heads in the riverbed keep levitating in time; the aquifer in the riverbed fills
up. Figure 9.12b is evidently in agreement with this conclusion. The volume of water stored in the
riverbed continues to increase on average. At the end of the simulation period, the groundwater
storage in polygon 1 has increased with 350 percent on average compared to the calibrated
model and with 50 percent in polygon 2. The polygon lies for the foremost part outside the area in
which the thickness of the sand layer in the riverbed is increased, leading to a smaller

enhancement of the groundwater storage possibility.
From Figure 9.12a it becomes clear that increasing the height of the Kwa Ndunda sand dam with

1.5 meter does affect the groundwater levels in the downstream area; peaks in head are 10

centimeter on average and approximately 7 centimeter during the dry season.
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Figure 9.11 Groundwater level calculated by the calibrated model and the scenario as
calculated in the western riverbank
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Figure 9.12 Difference between the calculated groundwater levels and storage in the riverbed as a result of increasing
the heiaht of the Kwa Ndiinda sand dam (Scenario 3)
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9.3.3 Discussion
The higher and wider dam obstructs groundwater flow through the riverbed and part of the

riverbanks, resulting in a groundwater basin comprising a larger part of the riverbed and —banks
as compared to the calibrated model. Comparable to the calibrated model, raised heads directed
around the sand dam. The closely spaced contour lines indicate an increase in flow velocity
towards the riverbed downstream of the sand storage dam.

The close

Increasing the dam height with 1.5 meter leads to a situation in which the riverbed aquifer is not
recharged completely within one wet season. Several wet seasons are required to fill up the

aquifer, resulting in lower groundwater levels in downstream areas.

9.3.4 Scenario 4b - Increasing the dam height with 0.75 meter
To test the above mentioned hypothesis, a variation on scenario 4 is made (Scenario 4b) in which

the dam height is increased with 0.75 meter instead of 1.50 meter. The result of running the
model under these settings is shown in Figure 9.15.

Groundwater levels calculated by the model run of scenario 4b are elevated with respect to those
calculated by the calibrated model but show normal trends; fluctuations of groundwater storage in
the riverbed corresponds to those of the calibrated model, although the volumes are enlarged by
the enhanced storage capacity. However, recession curves show a smaller gradient (Figure
9.16).

Groundwater flow is not affected by the increased height of the sand dam as compared to the
calibrated model.

Groundwater levels upstream of the sand storage dam are influenced most; 0.24 meter on
average, increasing to 35 centimeter during the dry season. Increasing dam height leads to an
average increase in storage of more than 200 percent during the dry season, equal to 1590 m?.
The effect on downstream piezometers is negligible; 4 centimeters on average and maximal 7

centimeters.
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Figure 9.15 Groundwater level calculated by the calibrated model and the scenario with an increase in
dam height of 0.75 meter as calculated in the riverbed upstream of the Kwa Ndunda sand dam
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Figure 9.16 Fluctuations in the volume of groundwater stored in the river bed upstream of the Kwa Ndunda sand dam
as calculated by the calibrated model (crossed) and Scenario 4b (plain

9.3.5 Discussion
Increasing crest height with 0.75 meter influences groundwater storage in the riverbed positively,

especially during the dry season, due to an increase in storage capacity. The aquifer is still
recharged completely within one or two rainfall events and thus influences downstream areas to a

limited extent. It can however not be established with certainty what happens if this measure is

applied to a cascade of dams.
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9.4 Scenario 4 — Groundwater abstraction from the riverbed

9.4.1 Description
Groundwater abstraction from the riverbed is included in this scenario to study the effects on

groundwater flow, storage and period of availability. As explained in Paragraph 2.6.2, during the
dry season groundwater is primarily abstracted from the riverbed through hand-dug wells. Figure
9.17 shows the location at which the most important scoop hole is located. Borst et al. (2006)
estimated the total current water demand of the community to be 8 m®/day. Groundwater is only
abstracted during the dry season, since surface water is available during the wet season. The
input to the model is shown in Figure 9.18.
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Figure 9.17 Locations of abstraction point in the riverbed upstream of the Kwa Ndunda sand dam
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Figure 9.18 Time frame of groundwater abstractions from the river bed upstream of the Kwa Ndunda
sand dam as used in Scenario 4 — Groundwater abstraction
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9.4.2 Model results
Figure 9.19, Figure 9.20 and Figure 9.21 show the effect of groundwater abstraction from the

riverbed on model results.

As compared to the results of the calibrated model, groundwater flow is directed south through
the banks and riverbed. Upstream of the sand dam, groundwater flows from the riverbed towards
the banks and around the sand dam through the banks. However, groundwater levels decrease
faster during the dry period in the zone behind the sand dam.

Orientation of contours changes direction abruptly in response to groundwater recharge;
groundwater flow is directed towards the river. After the last rainfall event, head differences
between the riverbed and -banks level out and groundwater flow is oriented to the south and
towards the riverbed again.

Figure 9.21 visualizes spatial differences between groundwater levels calculated by the calibrated
model and the ones computed in this scenario. Groundwater levels decrease circular towards the
scoop hole. Deviation from the calibrated model is biggest during the dry season. Groundwater
levels decrease with 10 centimeter in a zone of approximately 20 meter from the location of the
scoop hole. Heads in piezometer p06 lowered 17 centimeter due to abstraction during the long
dry period, representing a volume of 150 m® (Polygon 1). The influence on groundwater storage
in Polygon 2 is 50 m°. The riverbanks are also influenced by the abstraction of water from the
riverbed; a lowering of 10 centimeter is experienced at 25 meters from the scoop hole.
Piezometer p02 and p08 experience a maximum drawdown of 13 centimeter (Figure 9.19a).
Downstream of the sand dam groundwater levels are influenced negligible by abstraction of
groundwater from the riverbed. Differences between computed groundwater levels diminish
completely as soon as the wet season starts (Figure 9.21); the aquifer recovers fully from
abstraction within the first rainfall event. This conclusion is in correspondence with the recovery of

groundwater storage visualized in Figure 9.19b.
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Figure 9.19 Difference between the calculated groundwater levels of scenario 4 and the calibrated model

9.4.3 Discussion
Abstraction of water from the riverbed results in a faster decrease in head compared to the

situation of the calibrated model. Groundwater levels decrease circular towards the location of the
scoop hole. However, at the rate of groundwater abstraction as performed momentarily,
groundwater levels upstream of the sand dam are influenced to some extent but very locally.
However, increased groundwater flow from riverbanks and through the riverbed will compensate
the groundwater abstraction for an important part. This points out the importance of the
riverbanks in groundwater storage. Furthermore, the abstraction rate can be enlarged, for
example to extent the aerial of irrigated crops.

Declined groundwater levels due to abstraction of water diminish completely at the start of the
wet season; the aquifer recovers fully within the first rainfall event.
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10 Conclusions

Importance of sand dams

Communities in rural areas have always relied almost completely on water abstraction through
hand-dug wells (scoop holes) from dry sand riverbeds. However, the riverbed would often
desiccate before the start of the next rain season, because of which water would need to be
fetched in other catchments. The socio-economic impacts of this situation are discussed more
elaborately in De Bruijn et al. (2006). Since centuries, sand storage dams are constructed in
sandy riverbeds in (semi) arid areas (Nissen-Petersen, 2006) to increase the natural groundwater
storage capacity through sedimentation of sand upstream of the dam during wet seasons. This
method has proven to be very successful in addressing water scarcity in semi-arid Kitui District,
Kenya.

To study the impacts of sand storage dams on groundwater flow and availability, a quasi-3D
groundwater model was set up around the Kwa Ndunda sand dam (Kiindu river, Kenya) in model

environment Triwaco, using calculation module Flairs.

Impacts of sand dams on groundwater flow and storage

The presence of a sand storage dam increases the natural storage capacity of the riverbed, while
obstructing groundwater flow through the riverbed as well. Groundwater flow is predominantly
topography driven, resulting in groundwater flow oriented south and towards the riverbed during
the dry season. The obstruction of groundwater flow through the riverbed results in a subsurface
water reservoir. The consequential elevated heads upstream of the sand dam in the zone of
influence (stretching to a maximum of 350 meter upstream of the sand dam at the end of the dry
season) result in groundwater flow from the riverbed into the banks and through the riverbanks
around the sand dam. Downstream of the sand dam groundwater flow is oriented towards the
riverbed. The riverbed aquifer is replenished by groundwater flow downstream through the
riverbed. The presence of the sand dam bridges periods of drought until the next rain season. At
the end of the dry season the sand body within 200 meter upstream of the sand storage dam
contains a volume of approximately 580 m°, while in a model scenario in which the sand dam is
absent the riverbed dries up within 1.5 months after the start of the dry period.

From a hydrogeological point of view, the functionality of sand storage dams in semi arid areas
with unreliable and scarce precipitation can be explained partly by the coarse riverbed sand. The
coarse sand enables rapid responses of the groundwater table on precipitation and protects
groundwater from excessive evaporation due to low capillary forces and increased thickness of

the sand layer in the riverbed. After the first heavy rainfall event, the riverbed aquifer is recharged
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completely and the river starts to flow. This leads to the conclusion that downstream areas are
not significantly influenced by refilling of the enhanced riverbed aquifer.

Parameters of importance to successful functioning of sand dams

Besides thickness of the sand layer in the riverbed, hydraulic conductivity and thickness of the
sediment layer in the riverbanks are important parameters, influencing the reaction of
groundwater levels on precipitation on the riverbanks, recession of groundwater levels and the
volume of groundwater storage in the riverbed. Higher hydraulic conductivity leads to a less
pronounced response of groundwater levels to precipitation and a larger gradient of the recession
curve, as well as a faster decline in the volume of water stored in the riverbed. Hydraulic
conductivity and thickness of the weathered rock layer and flood depth have less influence on

model results.

Improving functionality sand dams

Increasing riverbed thickness by enhancing the height of the sand dam increases groundwater
availability effectively. An increase of 0.75 meter results in an enhancement of groundwater
storage in the riverbed from 500 m® to 1590 m® while having a negligible effect on the
downstream area. It can however not be established with certainty what happens if this measure
is applied to a cascade of dams. Increasing the dam height with more than 0.75 meter causes
lower groundwater levels in downstream areas. Rainfall events are not large enough to fill the
riverbed aquifer in one wet season, leading to a decrease in groundwater flow towards the
downstream area.

It is however not necessary to increase the height of the Kwa Ndunda sand dam, since
groundwater abstraction as performed momentarily (approximately 8 ms/day) influences
groundwater levels in the riverbed and -banks upstream of the sand dam to some extent but very
locally. Increasing the abstraction rate with 50 percent still only leads to a decrease in
groundwater levels of 25 percent of the average groundwater volume present in the riverbed.
However, a volume of approximately 400 ms/day is still present in the riverbed, pointing out the
potential of increasing groundwater abstraction for irrigation of crops. Larger groundwater
abstraction from the riverbed is compensated for an important part by increased groundwater flow
from the riverbanks towards the riverbed, which would otherwise simply be emptied. The
riverbanks are the main source of groundwater replenishment during the dry season; the potential
groundwater harvest from an aquifer upstream of a sand storage dam is thus larger than the
volume of water present at a certain moment in time in riverbed.

Declines in groundwater level caused by the abstraction of water diminish completely as soon as
the wet season starts; the aquifer recovers fully within the first rainfall event.
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Improved groundwater recharge is concluded to lead to a larger volume and prolonged period of
groundwater availability. Increasing groundwater recharge with 20 to 50 percent (through
performing land husbandry measures such as regenerating natural vegetation, terracing and
ploughing of agricultural plots) leads to significantly higher groundwater levels and thus in
riverbed storage.

Loss of groundwater

The program used to perform the water balance calculation had difficulties determining the
horizontal fluxes over the boundaries of the water balance area with sufficient accuracy. It was
thus not possible to quantify the volume of groundwater lost through flow around the sand dam.
On the other hand, loss of groundwater through groundwater flow around a sand dam is not
relevant when considering a cascade of sand dams (Orient Quilis, 2007).

The risk of increased groundwater flow through the riverbanks around the sand dam due to above
discussed measures is related to larger chance on failure of the sand dam due to potential
erosion of the riverbanks caused by larger groundwater fluxes. Failure of sand dams because of
erosion of the riverbanks is described in Gijsbertsen (2007). To decrease the risk, sand dams
should be attached to the basement in the riverbanks. Otherwise, erosion of the riverbanks will

lead to failure of the sand dam (Nissen-Petersen, 2006).

Application of the model in other potential sand dam areas

The groundwater model can be used as an indication of the effect of building a sand storage dam
in the riverbed in terms of the volume of water stored in the riverbed, potential storage in
riverbanks and the period in which groundwater is available for abstraction. To this aim, generic
data, such as a SRTM DEM, VESses, approximate precipitation data and literature values of
hydraulic parameters, can be used as input to the model.
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11 Recommendations

Water balance

Although fluctuations in storage in the riverbed are determined, performing a water balance study
to quantify the groundwater flux around the sand dam and the influxes of water from the banks
would be a great improvement of the present state of knowledge.

Groundwater flow model

Several additions to the groundwater model can be made to include more processes. Firstly, an
unsaturated zone model could be integrated. In this way, the delay between precipitation and
actual groundwater recharge can be incorporated. Furthermore, it might increase certainties
regarding the percentage of precipitation leading to groundwater recharge by incorporating
evaporation from the upper part of the soil. However, additional data will be needed (e.g.
thickness of the sediment layer throughout the model area).

From a scientific point of view, improving the conceptual model might also include integration of
the groundwater model with the precipitation-discharge model set up by Jansen (2007), which
would lead to an integration of the reaction of groundwater levels in the riverbed to precipitation.
However, for the aim the groundwater model is designed, integration of these models will

probably have limited effect.

Fieldwork

Thickness of the riverbed affects model results most extensively. Although the parameter is
known with acceptable certainty in the area of interest, it might be interesting to apply geophysics
to study the degree of weathering of the granite underneath the riverbed. A remaining question is
whether a significant volume of water is lost by infiltration into and flow through the granite
basement, which is assumed to be impermeable underneath the weathered zone.

Another way to enhance model reliability efficiently is by extending groundwater level
measurements further into the riverbanks and to more upstream parts of the riverbed. This will
also provide more data on hydrogeology (on which more data could be collected through
performing VESses more towards the catchment boundaries).

Uncertainty on model input is largest of groundwater recharge. From a practical point of view,

accuracy regarding this parameter could be enhanced by performing oxygen isotope analysis of
groundwater and precipitation samples.
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When applying the sand dam technology in other areas, it would be advisable to install
piezometers in advance of building the sand storage dam, to study fluctuations in groundwater
levels and the effect of constructing a sand dam on heads and thus groundwater flow.
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Appendix 1 Geological map of the area around Kitui town
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Appendix 2 Poster presented at the EGU convention

Water supply through sand dams (Kitui district — Kenya)
I\/Iodellinga success story

e

. L AT

T;lpicai sand dam during the dry season

Sand dams

One of the examples of successfully addressing water scarcity
in rural areas is the construction of sand storage dams in
ephemeral rivers in the Kitui district (Kenya). These dams are
small concrete check dams (Figure 1 and photographs), build to
a large extent by the beneficiary community. The program is
funded by the Kenyan Ministry of Water and foreign agencies.
To date, almost 500 dams have been constructed, supplying
about 100 000 people with water during the dry season.

Figure 1 Schematic cross section of a typical sand dam (Borst et al, 2006)

Relevance of the model

A physically based numerical groundwater model (Triwaco) is
set up to improve understanding of hydrological processes
regarding the functioning of sand storage dams. Calibration
data is gathered during 2 field campaigns (October 2005 and
October 2006) in the Kiindu catchment, approximately 10 km
from Kitui Town (UTM 38.02 m East, -1.367 m South, WGS
378) and includes 1.5 years of groundwater level and
precipitation measurements, among other data. The modelling
effort will result in physical properties determining the
successful functioning of sand dams. The outcome will increase
the chance of lucratively applying this technology in other semi
arid areas. Currently the Acacia Institute is, in cooperation with
the Dutch RAIN Foundation and Kenyan and Ethiopian NGO's,
in the process of identifying suitable catchments in southem
Ethiopia to construct a cascade of several dams. This initiative
is recently awarded the Swiss Re Intemational ReSource Award
for Sustainable Watershed Management.

The influence of increased river bank infiltration on groundwater
recharge and availability in relation to sand dams is assessed
using the same numerical model.

Contact

Questions and

comments can be

directed to Merel

Hoogmoed (e-mail
Vrije Universiteit hooe@qgeo.vu.nl
Amsterdam

www .acaciainstitute.nl

Typical sand dam during the wet season

Groundwater dynamics

Groundwater levels in the river bed as well as in the river banks
increase rapidly in response to precipitation. Amplitude
increases and response time decreases with increasing
distance from the river bed (Figure 2).

Due to dual porosity, two components can be distinguished in
the groundwater recession curve; a steep initial decrease which,
below a certain groundwater level, transits into a more gradual
decrease, The shape of the recession curve is nevertheless
constant and dependant of soil type. Sandy soils result in a
steep linear decrease, whereas silty soils result in an
exponential curve. In the upper aquifer, groundwater is present
in a zone of maximal 20 meter along the channel at the end of
the wet season. During the dry season, this zone decreases to
less than 10 meter, depending on the relief. Outside this area,
groundwater is present in fractures in the granite basement.
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Figure 2 Detail of groundwater level fluctuations 100 m downstream of the Kwa|
Ndunda sand dam in four piezometers at increasing distance from the river bed

Results and conclusions (preliminary)

Model simulations have shown hydraulic conductivity and
groundwater recharge strongly influencing the manner in which
the groundwater table decreases. Higher groundwater recharge
leads to a more gradual decrease, as does a larger hydraulic
conductivity. As a consequence of interception, infiltration
excess overland flow and evapo(transpi)ration, a mere 15
percent of the precipitation (avg. 1000 mm/yr) leads to
groundwater recharge. Model simulations further indicate
optimization of river bank infiltration leading to significantly
increased groundwater recharge and therefore availability
during dry seasons.

Although the sand dam prevents groundwater to flow
downstream through the river bed, flow patterns indicate
groundwater flow around the dam through the river banks.
Currently, a water balance study is carried out to quantify the
amount of water
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Appendix 3 Locations of piezometers around Kwa Ndunda dam
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Appendix 4 Referencing groundwater level data

Groundwater levels measured by the divers are referenced to the lowest level of the sand dam
(LH20O || Ref level, Figure A.4) using Equation A4.1. Ltop of well || Ref level equals the height of
the top of the piezometers with respect to the sand dam (Reference level), Lcable equals the
depth of the diver with respect to the lid of the piezometer, LDiver equals the pressure measured
by the diver and Lbaro equals the pressure measured by the barometric diver (Figure A4.1;
Eijkelkamp, 2006).

LH20 || Ref level = Ltop of well || Ref level - Lcable + LDiver — Lbaro Equation A4.1

Manual measured groundwater levels are also referenced to the lowest level of the sand dam
(LH20O || Ref level) using Equation A4.2, in which Ltop of well || Ref level equals the height of the
top of the piezometers with respect to sand dam and LH20 || top of well equals measured
groundwater level (Figure A4.1; Eijkelkamp, 2006).

LH20 || Ref level = Ltop of well || Ref level - LH20 || top of well Equation A4.2

o)
"1."'1.'!'1." g Laaro

[ |
LHZO || top of well
E-top of well || Ref level
o I B S
r
Reference level Limanuat = L20 || Ref level
A
A
L
Loffset H20
i, S . S
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Figure A4.1 Visualisation of the compensation of the diver measurements for
barometric pressure and to a reference level (after Eijkelkamp, 2006)

113



Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

114



Analyses of impacts of a sand storage dam on groundwater flow and storage

Groundwater flow modelling in Kitui District, Kenya

Appendix 5 Characteristics of piezometers

UTM WGS84 37S Elevation top Depth
Piezometer |Northing| Easting | (m + dam spillway) (m)
pO1 389165] 9838443 2.428 0.90
p02 389096] 9838442 1.291 1.80
p03 389175] 9838443 1.088 1.87
p04 389180] 9838438 0.548 1.54
p05 389187 9838458 0.341 1.68
p06 389197 9838422 -0.103 1.82
p07 389201] 9838446 0.860 1.50
p08 389207] 9838442 1.360 1.35
p09 389215] 9838439 2.011 4.85
p10 389202] 9838390 0.424 #N/A
pii 389211] 9838390 0.178 #N/A
p12 389203 9838371 0.095 #N/A
pi3 389139| 9838319 0.127 3.30
pl4d 389142] 9838316 0.118 3.82
p15 389146] 9838315 -0.303 3.04
p16 389160] 9838306 -2.075 0.56
pl7 389152 9838304 -2.075 0.87
pi18 389166 9838303 -0.678 1.69
p19 389172] 9838302 -0.561 1.03
p20 389171] 9838300 -0.561 1.26
p21 389177| 9838298 -0.067 2.33
p22 389200] 9838442 3.168 3.50
p23 389148.1] 9838306 -0.147 1.40
p24 389197 9838423 -2.327 1.70
p25 389227 9838441 3.505 5.40
p26 389123.6] 9838440 5.804 0.90
p27 389197 9838412 -0.073 1.55
p28 389197 9838412 -0.073 0.20

115



Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

116



Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

Appendix 6 Sensitivity analysis

To the aim of the sensitivity analysis, several simulations are performed with parameter values

based on field values using multiplication factors of 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5.
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Hydraulic conductivity of the sediment layer (aquifer 1)
Figure A6.1 shows the result of varying hydraulic conductivity of the sediment layer (e.g. aquifer

1) on model results. Variation using a multiplication factor of 0.8 and 1.2 seems to have little
effect on model results, although amplitude of peaks in the riverbanks and gradient of recession
curves everywhere increase with lower hydraulic conductivity. Furthermore, results of increasing
Ksat With 20 percent to an instability of the model during the dry period between 03-05-2006 and
15-10-2006. Another observed change is the higher level at which the model reaches a stable
situation during the dry season resulting from a smaller hydraulic conductivity. Multiplication with
0.5 leads to a significantly more pronounced reaction of groundwater levels on precipitation in the

riverbanks and a more gradual decrease of heads in the riverbed and -banks.
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Figure A6.1 Influence of variation in the hydraulic conductivity of the sediment layer on the simulated groundwater
levels at different locations around the Kwa Ndunda sand dam
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Hydraulic conductivity of the weathered rock layer (aquifer 2)
Figure A6.2 shows the effect of varying the hydraulic conductivity of the weathered rock layer

(e.g. aquifer 2) on calculated groundwater levels. An increase of the hydraulic conductivity leads
to a decrease of the gradient of the drawdown curves. Also, the response of groundwater levels
to precipitation is less pronounced in the riverbanks. Timing and levels of raised heads are not
influenced by varying K of aquifer 2. Increasing the hydraulic conductivity with 50 percent
causes model instabilities, especially in the riverbed upstream of the sand dam during the dry
period between 03-05-2006 and 15-10-2006. However, multiplication with 0.5 leads to a
somewhat more pronounced reaction of groundwater levels on precipitation in the riverbanks and

a slightly more gradual decrease of heads during the dry season in the riverbed and -banks.
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Figure A6.2 Influence of variation in the hydraulic conductivity of the weathered rock layer on the simulated
groundwater levels at different locations around the Kwa Ndunda sand dam
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Thickness of the sediment layer on the riverbanks (aquifer 1)
Figure A6.3 shows the effect of changing the thickness of the sediment layer on groundwater

levels as calculated by the model. Variation between 0.8 and 1.2 seems to have little effect on
model results although amplitudes of peaks in the riverbanks and the gradient of recession
curves everywhere increase with decreasing thickness. Instabilities are experienced when
running the model with an increase of more than 20 percent, especially in the riverbed during the
dry period between 03-05-2006 and 15-10-2006. Multiplication of the thickness of the sediment
layer with 0.5 leads to a significantly more pronounced reaction of groundwater levels on
precipitation in the riverbanks and a smaller gradient of the recession curves in the riverbed and

banks.
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Figure A6.3 Influence of variation in the thickness of the sediment layer on the simulated groundwater levels at
different locations around the Kwa Ndunda sand dam
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Thickness of the weathered rock layer on the riverbanks (aquifer 2)
Figure A6.4 shows the effect of varying the thickness of the weathered rock layer on groundwater

levels computed by the model. Variation between 0.8 and 1.2 seems to have little effect on model
results although amplitudes of peaks in the eastern riverbanks and gradients of recession curves
everywhere increase with decreasing thickness. Instabilities are experienced when running the
model with a 20 and 50 percent increase, especially in the riverbed during the dry period between
03-05-2006 and 15-10-2006. However, multiplication of the thickness with 0.5 leads to a
somewhat more pronounced reaction of groundwater levels on precipitation in the riverbanks and

a more gradual decrease of heads during the dry season in the riverbed and banks.
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Figure A6.4 Influence of variation in the thickness of the weathered rock layer on the simulated groundwater levels

at different locations around the Kwa Ndunda sand dam

125




Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

Thickness of the sand layer in the riverbed (aquifer 1)
Figure A6.5 shows the effect of changing the thickness of the sand layer in the riverbed on

groundwater levels computed by the model. The effect on computed heads is largest in the
riverbed. Decreasing the thickness leads to lower simulated groundwater levels, especially using
a multiplication factor of 0.5, results in a slight decrease of the gradient of the drawdown curve.
Increasing the thickness of the sand layer in the riverbed has a relative small effect on simulated
groundwater levels compared to the same decrease of thickness.
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Figure A6.5 Influence of variation in the thickness of the sand layer in the riverbed on simulated groundwater levels
at different locations around the Kwa Ndunda sand dam
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Groundwater recharge
The effect of groundwater recharge on computed heads is shown in Figure A6.6. Groundwater

recharge influences peaks of heads in riverbanks as well as the gradient of the drawdown curves;
larger groundwater recharge leads to a smaller gradient. The model becomes instable when
groundwater recharge is reduced with 50 percent.

Decreasing the groundwater recharge with 20 percent leads to lower groundwater levels during

the dry season in the riverbanks as well as the —bed.
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Figure A6.6 Influence of variation in the recharge rate of the groundwater on the simulated groundwater levels at
different locations around the Kwa Ndunda sand dam
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Flood depth
Figure A6.7 shows the effect of thickness of flood depth on model results. Increasing the depth

seems to have little effect, as does decreasing flood depth with maximal 20 percent. However,
decreasing flood depth with 50 percent influences groundwater simulation in area upstream of the
sand dam; peak elevation decrease as well the gradient of the recession curve. The effect is

largest in the riverbed.
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Figure A6.7 Influence of variation in the flood depth in the riverbed on the simulated groundwater levels at different
locations around the Kwa Ndunda sand dam
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Appendix 7 Reliability analysis

To the aim of the reliability analysis, several simulations are performed with parameter values
based on calibrated values using multiplication factors of 0.5, 0.8, 0.9, 1.1, 1.2 and 1.5.
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Hydraulic conductivity of the sediment layer (aquifer 1)
According to Figure A7.2, the influence of varying hydraulic conductivity between 20 percent of

the calibrated values has little effect on groundwater levels in the riverbanks; changes in head are
less than 10 centimeter. Heads in the riverbed seem to be more sensitive to variations in
hydraulic conductivity. However, varying Ksy; with 50 percent leads to an evident increase in
heads at all locations. The riverbed shows a maximum increase in head of 0.70 meter upstream
and 0.30 meter downstream of the sand dam. Groundwater levels in the riverbanks increase also;

30 centimeter on average downstream of the riverbed and 0.15 meter upstream of the sand dam.

Figure A7.1 shows the effect of variation in hydraulic conductivity on the volume of groundwater
storage (m3) in the riverbed, which is quantified in Table A7.1. For all model runs, the effect (both
positive and negative) is largest in Polygon 1. The effect of a certain change in hydraulic
conductivity increases as the dry season proceeds. The maximum difference is experienced with
a run in which the hydraulic conductivity is half the value it is in the calibrated model, i.e. 197.2
m?®, which is relatively large compared to storage increased due to reducing the conductivity with
10 or 20 percent. Increasing Ks; with 20 percent leads to instabilities in calculating storage in
Polygon 1 during the prolonged dry season. Figure A7.1 shows the same outcome; the instability
is largest in the riverbed. An increase of 10 percent of the hydraulic conductivity leads to a
decrease in volume of 52.4 m® on average and approximately 100 m® during the dry season.
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Figure A7.1 Influence of variation in hydraulic conductivity of aquifer 1 on calculated groundwater storage in the
riverbed (mR3)

Factor |Diff. in polygon 1 |Diff. in polygon 2 | Table A7.1 Average volume difference (m3/timestep) compared
0.5 197 .2 1182 to the groundwater storage in the riverbed calculated by the
0.8 68.2 A42.0 calibrated model as an effect of variation in hydraulic conductivity
0.0 35.0 20.4 of aquifer 1
1.1 -52.4 -34.5
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Hydraulic conductivity of the weathered rock layer (aquifer 2)
Figure A7.4 quantifies the effect of varying the hydraulic conductivity of the weathered rock layer.

Deviations from the calibrated model are mainly within 10 centimeter in the riverbanks.
Concluding from the relatively scattered deviation observed in the riverbed both up- and
downstream of the sand dam, the riverbed seems a bit more sensitive to variation of this
parameter. Decreasing the hydraulic conductivity with 50 percent leads to an elevation of water
levels of 30 centimeter on average in the riverbed upstream of the sand dam. The riverbanks

show variations of less than 10 centimeter except for piezometer p02 deviating 0.22 meter on
average.

Figure A7.3 visualizes the effect of variation in hydraulic conductivity of aquifer 2 on groundwater
storage in the riverbed. Table A7.2 quantifies the change in volume of water stored in the
riverbed. Groundwater storage in Polygons 1 and 2 are influenced within the same range, which
is largest during the dry season. Augmenting the hydraulic conductivity with 50 percent results in
an increase in groundwater storage of 73.1 m? in Polygon 1, while storage in Polygon 2 increases
with almost 69 m°. Increasing Kgy with 20 percent leads to a decrease in storage of 37.2 m? in
polygon 1. The effect of applying a multiplication factor of 1.5 is not taken into account because of
instabilities. The effect on groundwater storage increases as the dry season proceeds.
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Figure A7.3 Influence of variation in hydraulic conductivity of aquifer 2 on groundwater storage in the riverbed (m3)

Factor |Diff. in polygon 1 |Diff. in polygon 2 | Table A7.2 Average volume difference (m3/timestep)

05 73.1 67.8 compared to the groundwater storage in the riverbed

0.8 39'1 33'0 calculated by the calibrated model as an effect of variation in
: : : hydraulic conductivity of aquifer 2

0.9 24.6 20.0

1.1 -30.5 -25.9

1.2 -37.2 -33.7
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Thickness of the sediment layer on the riverbanks (aquifer 1)
Figure A7.6 quantifies the effect of varying the thickness of the sediment layer on groundwater

levels around the sand dam. Variation between 20 percent from the calibrated value leads to
differences in groundwater levels of less than 10 centimeter in the riverbanks. However, the
riverbed seems more sensitive to variations and shows an average deviation of 28 centimeter
due to 20 percent variation in the upstream riverbed versus 15 centimeter downstream. Varying
the thickness of the layer with 50 percent leads to a more pronounced effect on computed
groundwater levels in the riverbanks showing an increase of 15 centimeter on average. Heads in

riverbanks rise up to 67 centimeter and averagely with 38 centimeter.

Figure A7.5 visualizes the effect of variation in thickness of the sediment layer on riverbanks on
the volume of groundwater storage (m3) in the riverbed, which is quantified in Table A7.3. For all
model runs, the effect (both positive and negative) is approximately twice as large in Polygon 1
compared to Polygon 2. Differences in groundwater storage increase as the dry season
proceeds, and level out at the start of the wet season. The maximum volume difference is
experienced in Polygon 1 when decreasing the thickness of the sediment layer with 50 percent,
namely 197.2 m® on an average volume of approximately 550 m°. The difference is proportionally
large compared to reducing layer thickness with 10 or 20 percent. Increasing layer thickness
results in a decrease in groundwater storage within the same magnitude as a decrease with the
same amount; approximately 30 m?® resulting from a change of 10 percent.
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Factor |Diff. in polygon 1 |Diff. in polygon 2 | Table A7.3 Average volume differences (m3/timestep) with the
0.5 185.1 92.8 groundwater storage in the riverbed calculated by the calibrated model as
0.8 69.6 36.7 an effect of variation in thickness of aquifer 1
0.9 35.6 17.7
1.1 -28.1 -15.1
1.2 -55.5 -38.2
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Figure A7.6 Quantification of the effect of varying the thickness of the sediment layer on the simulated groundwater
levels at different lncations aroiind the Kwa Ndiinda sand dam
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Thickness of the weathered rock layer on the riverbanks (aquifer 2)
Figure A7.8 quantifies the effect of varying thickness of the weathered rock layer on groundwater

levels around the sand dam. Variation between 20 percent from the calibrated value leads to
differences of approximately 5 centimeter in the riverbanks. However, the riverbed seems more
sensitive to these variations and shows an average deviation of 23 centimeter due to a 20
percent variation. Varying the thickness of the layer with 50 percent leads to a slightly more
pronounced effect on computed groundwater levels in the riverbanks showing an increase of 9
centimeter on average. Heads in the riverbanks rise up to 60 centimeter and averagely with about
0.25 meter.

The effect of differences in thickness of the weathered rock layer on the volume of groundwater
storage (m®) in the riverbed is shown in Figure A7.7 and quantified in Table A7.4. For all model
runs, the effect (both positive and negative) in Polygon 1 is the same order of magnitude as
Polygon 2. Differences in groundwater storage increase as the dry season proceeds, and level
out at the start of the wet season. Decreasing the thickness of the weathered rock layer with 50
percent leads to an increase in volume of water stored in the riverbed of 86 m®. Increasing the
thickness seems to have a relatively small effect on groundwater storage compared a decrease in
thickness with the same order of magnitude; a ten percent change leads to a change in storage of

respectively -1.8 m® and 28.8 m°.
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Figure A7.7 Influence of variation in thickness of aquifer 2 on calculated groundwater storage in the riverbed (m3)

Factor |Diff. in polygon 1_|Diff in polygon 2 Table A7.4 Average volume differences (m3/timestep)
0.5 86.0 73.5 compared to the groundwater storage in the riverbed
0.8 40.0 35.3 calculated by the calibrated model as an effect of variation in
09 258 8 o5 6 thickness of aquifer 2
1.1 -1.8 -2.9
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Figure A7.8 Quantification of the effect of varying the thickness of the weathered rock layer on the simulated
groundwater levels at different locations around the Kwa Ndunda sand dam
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Thickness of the sand layer in the riverbed (aquifer 1)
Figure A7.10 quantifies the effect of varying the thickness sand layer in the riverbed on

groundwater levels around the sand dam. Changes in riverbed thickness influence the head in
the riverbanks linearly. An increase in thickness of 10 percent leads to an elevation of the
groundwater level of 6 centimeter on average at all locations in the riverbanks, a decrease with
the same percentage leads to a lowering of heads with 6 centimeter. A 20 percent increase leads
to an increase of 12 centimeter, a decrease of 20 percent results in a drop in computed heads of
12 centimeter. Decreasing the thickness with 50 percent leads to a drop of 0.28 meter in
downstream riverbanks, while upstream banks experience a decrease of 40 centimeter.

Increasing the thickness with 50 percent leads to an increase of 0.3 meter at the same location.

The riverbed shows a different reaction. The effect of increasing the thickness of the riverbed is
larger than of decreasing the riverbed with the same factor. An increase of 50 percent in
thickness leads to an increase in head of 50 centimeter on average, while a decrease with the
same factor leads to a decrease of heads of only 20 centimeter.

The effect of changing the thickness of the sand layer in the riverbed on the volume of
groundwater storage (m®) in time in the riverbed is visualized in Figure A7.9 and quantified in
Table A7.5. The influence of increasing the thickness on storage is obvious; an increase of 10
percent leads to an increase of 91 m® increasing to 405 m® at an amplification of 50 percent. The
average groundwater storage in the riverbed at the location of Polygon 1 is approximately 800
m?®, which implies a rough doubling-up of groundwater storage in the riverbed in time. Decreasing
the parameter leads to changes in volume somewhat smaller than the equivalent positive change.

The effect on the volume stored in Polygon 2 is smaller compared to Polygon 1.
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Figure A7.9 Influence of variation in thickness of the riverbed on calculated groundwater storage in the riverbed (m3)

Factor | Diff. in polygon 1 [Diff. in polygon 2 | Table A7.5 Average volume differences

05 -459.6 -331.4 (m3/timestep) compared to the groundwater
08 —209 3 170.3 storage in the riverbed calculated by the
09 628 397 calibrated model as an effect of variation in
: - - thickness of the riverbed
1.1 914 80.3 140
1.2 191.6 156.3

1.5 406.5 383.3
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Figure A7.10 Quantification of the effect of varying the thickness of the riverbed on the simulated groundwater

levels at different locations around the Kwa Ndunda sand dam

I nnlIJ]-

Deviation (m)

0
100 000 0.80 -070 060 0,50 -040 -0.30 020 010 0.00 0.10 020 0.30 040 050 0.60 070 080 090 1.01

143



Analyses of impacts of a sand storage dam on groundwater flow and storage
Groundwater flow modelling in Kitui District, Kenya

Groundwater recharge
In the area downstream of the sand dam groundwater levels are influenced less by variation of

groundwater recharge compared to the upstream area; varying groundwater levels within 20
percent effects computed groundwater levels with less than 10 centimeter on average. The
exception is increasing recharge with 50 percent. Increase in groundwater levels is larger in the
riverbed compared to the banks; 28 centimeter and 16 centimeter on average. In the downstream
area the effect is larger in the riverbanks compared to the riverbed; 25 centimeter and 10
centimeter on average.

Figure A7.11 and Table A7.6 show the effect of changing the thickness of the riverbed on
volumes of groundwater stored (ms) in time in the riverbed. Increasing groundwater recharge
results in larger groundwater availability; 24 m® with a 10 percent increase of groundwater
recharge up to 106 m?® due to an increase of 50 percent. The influence on groundwater storage in

the upstream polygon is smaller; an increase of 65 m?® due to a decrease of 50 percent.
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Fiaure A7 .11 Influence of variation in aroundwater recharae on calculated aroundwater storaae in the riverbed

Factor [Diff. in polygon 1 |Diff. in polygon 2 | Taple A7.6 Average volume difference (m3/timestep) compared
0.5 -373.1 :246.9 to the groundwater storage in the riverbed calculated by the
08 828 646 calibrated model as an effect of variation in groundwater
0.9 4.2 2.9 recharge
1 4.3 5.8
12 16.8 24.0
1.5 106.7 65.8
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Figure A7.12 Quantification of the effect of varying groundwater recharge on simulated groundwater levels at different
locations around the Kwa Ndunda sand dam
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Flood depth
Figure A7.14 quantifies the effect of variation of flood depth on groundwater levels around the

sand dam. Groundwater levels are influenced very little by changes in this parameter, especially
in the downstream area. A decrease of 50 percent of flood depth leads to a decrease of
groundwater levels of only 2 centimeters in both the riverbed and —banks. In the upstream area,

groundwater levels are reduced with less than 10 centimeter on average.

Table A7.7 and Figure A7.13 show the effect of changing flood depth on volumes of groundwater
stored (m®) in time in the riverbed. Decreasing flood depth has a larger effect on groundwater
availability compared to increasing the flood depth with the same factor. A decrease of 50 percent

leads to a change in volume of -78 m?, using a multiplication of 1.5 results in an increase of 14.5

m.
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Figure A7.13 Influence of variation of flood depth on calculated groundwater storage in the riverbed (m3)
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Diff. in polygon 2 Table A7.7 Average volume differences
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0.8 -13.2 2.9 storage in the riverbed calculated by the calibrated
0.9 -16.4 -2.3 model as an effect of variation in flood depth
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1.2 2.0 -0.7
1.5 14.5 1.4
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Figure A7.14 Quantification of the effect of varying flood depth on simulated groundwater levels at different locations

around the Kwa Ndunda sand dam
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Appendix 8 Influence of the boundary conditions

To visualize the effect of variation of boundary condition on model results, results of model runs
calculated with deviating boundary conditions is abstracted from those with original boundary
conditions. The influence appears to be largest at the beginning of the dry season after the
extended wet season of April 2006. Figure A8.1 shows the differences at this moment in time for
model runs with a heads of +0.3 m, +0.1 m, -0.1 m and -0.3 m with respect to the boundary
condition used in the calibrated model.

Influences are largest at the northern and southern boundary at the location of the river. Lowering
the boundary condition with 0.3 meter leads to a lowering of head between 2 and 4 centimeter on
average in the area of interest. Decreasing the head at the boundary with 0.1 meter results in an
average decrease in computed head of 0 to 2 centimeter. Increasing the boundary condition with
0.1 meter leads to an increase in groundwater levels between 0 and 2 centimeter in the area of
interest, as does increasing the head at the boundary condition with 30 centimeter.

From the above analysis, the conclusion is drawn that boundary conditions influence a small area
near the boundary considerably, but do not significantly influence regional groundwater flow or

model results in the area of interest.
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Figure A8.1 Quantification of the influence of boundary conditions on the model result
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